Answer:
If Angle 1 is 110,
then the second angle to complete the straight angle (180 degrees) is...
180 - 110 = 70
Angle 2 = 110 (same as Angle 1, plus it's obtuse)
Angle 3 = 70 (it's acute)
Angle 4 = 70 (same as Angle3, plus it's acute)
Answer:
Either <em><u>10 times</u></em> or <u><em>598,000.</em></u>
Step-by-step explanation:
6 x 10 ^ 5 = 600,000
2 x 10 ^ 3 = 2,000
If we are figuring out the exact number, 600,000 - 2,000. If we are finding out how many powers larger, count.
600,000 - 2,000 = 598,000
600,000 is 10 times larger than 2,000.
See?
600,0<u>00</u>
2,000
B because I’m just guessing
-- He must have at least one of each color in the case, so the first 3 of the 5 marbles in the case are blue-green-black.
Now the rest of the collection consists of
4 blue
4 green
2 black
and there's space for 2 more marbles in the case.
So the question really asks: "In how many ways can 2 marbles
be selected from 4 blue ones, 4 green ones, and 2 black ones ?"
-- Well, there are 10 marbles all together.
So the first one chosen can be any one of the 10,
and for each of those,
the second one can be any one of the remaining 9 .
Total number of ways to pick 2 out of the 10 = (10 x 9) = 90 ways.
-- BUT ... there are not nearly that many different combinations
to wind up with in the case.
The first of the two picks can be any one of the 3 colors,
and for each of those,
the second pick can also be any one of the 3 colors.
So there are actually only 9 distinguishable ways (ways that
you can tell apart) to pick the last two marbles.