<span>The correct answer is 1. compound. There are three elements and not just one so it's not element. Mixtures wouldn't have the same properties that you described but these do so it's a compounds. Solution is not a solid thing but rather a liquid one. The two samples are therefore compounds.</span>
Water is always on the move. Rain falling today may have been water in a distant ocean days before. And the water you see in a river or stream may have been snow on a high mountaintop. Water is in the atmosphere, on the land, in the ocean, and underground. It moves from place to place through the water cycle.
Where's the water?
There are about 1.4 billion km3 of water (336 million mi3 of water) on Earth. That includes liquid water in the ocean, lakes, and rivers. It includes frozen water in snow, ice, and glaciers, and water that’s underground in soils and rocks. It includes the water that’s in the atmosphere as clouds and vapor.
If you could put all that water together – like a gigantic water drop – it would be 1,500 kilometers (930 miles) across.
1) The question contains an unknown unit
The number 8908.8 has to be in units of mass: for example, kg or grams.
Here you indicated L.
I am going to work assuming that L is a mass unit. So you can see the way to solve the problem, but you have to verifiy the real unit of the statement and substitute with it.
With that in mind you can find the density of the liquid from:
density = mass / volume
2) Calculate the volume.
The volume of the liquid is the volume of the vessel, because it is filled.
The volume of the vessel is calculated from the formula of volume for a rectantular prism.
Volume of a rectangular prism = area of the base * height = side * side * height
=> Volume = 10 dm * 4 dm * 6 dm = 240 dm^3 = 240 liter
3) Calculate the density:
density = mass /volume = 8,908.8 L / 240 liter = 37.12 L / dm^3
Answer: 37.12 L / dm^3
Answer:

Explanation:
Given that:-
Pressure = 
The expression for the conversion of pressure in Pascal to pressure in atm is shown below:
P (Pa) =
P (atm)
Given the value of pressure = 43,836 Pa
So,
=
atm
Pressure = 6.80977 atm
Volume =
= 2.3 L ( 1 m³ = 1000 L)
n = 2 mol
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T
⇒T = 95.39 K
The expression for the kinetic energy is:-

k is Boltzmann's constant =
T is the temperature
So, 
