Answer:
A flat, horizontal line
Explanation:
A flat, horizontal line indicates a phase change.
The temperature does not increase because the added heat goes into converting one phase into another.
A is wrong. A downward-sloping line indicates that the temperature is decreasing with time.
C is wrong. An upward-sloping line indicates that the temperature is increasing with time.
Answer:
The density of the block is 7.4g/ml.
Explanation:
We can determine the volume of the metal block by taking the difference between the volumes measured in the graduated cylinder:

Now, as we know that the average density of an object is calculated dividing its mass by its volume, we can calculate the density ρ of the metal block using the expression:

Finally, it means that the density of the metal block is 7.4g/ml.
So, based on the angle values that have been found, the angle of elevation of the nozzle can be <u>16° or 74°</u>.
<h3>Introduction</h3>
Hi ! This question can be solved using the principle of parabolic motion. Remember ! When the object is moving parabolic, the object has two points, namely the highest point (where the resultant velocity is 0 m/s in a very short time) and the farthest point (has the resultant velocity equal to the initial velocity). At the farthest distance, the object will move with the following equation :

With the following condition :
= the farthest distance of the parabolic movement (m)
= initial speed (m/s)
= elevation angle (°)- g = acceleration due to gravity (m/s²)
<h3>Problem Solving :</h3>
We know that :
= the farthest distance of the parabolic movement = 2.5 m
= initial speed = 6.8 m/s- g = acceleration due to gravity = 9.8 m/s²
<h3>What was asked :</h3>
= elevation angle = ... °
Step by Step :
- Find the equation value
(elevation angle)








- Find the angle value of the equation by using trigonometric equations. Provided that the parabolic motion has an angle of elevation 0° ≤ x ≤ 90°.
First Probability


→
(T)
→
(F)
Second Probability



→
(T)
→
(F)
<h3>Conclusion</h3>
So, based on the angle values that have been found, the angle of elevation of the nozzle can be 16° or 74°.
The general accepted value of acceleration due to gravity, g, is 9.81 m/s^2.
That is an approximation because being the acceleration of gravity due to the attraction of the earth its magnitude will depend on the distance from the point to the center of the planet Earth.
The value of g is determined by using the Newton's Universal Law of gravity:
F = G * m of Earth * m of body / (distance^2)
Wehre {G* m of Earth / (distance^2) } = g
G is a universal constant = 6.67 * 10 ^ -11 N*m^2 / kg^2
m of Earth = 5.98 * 10 ^ 24 kg
distance = radius of Earth + height of the body
Given the the Earth is not a perfect sphere the radius varies. Also the height of the body varies.
If you take a mean radius of Earth of 6.37*10^6 m
you get
g = 6.67*10^-11 N*m^2/kg^2 * 5.98*10^24kg / (6.37*10^6 m)^2 = 9.83 m/s^2
Again, if you want a more precise value of g, you need to find the exact place where you are and then use the right r.
Answer:
The diameter of a hydrogen atom based on scientific notation is 1.06 x 10^-10 m