Answer:
Explanation:
I think the answer is statement no 3.
Hope it helps.
Answer:
Explanation:
Given that,
Mass of star M(star) = 1.99×10^30kg
Gravitational constant G
G = 6.67×10^−11 N⋅m²/kg²
Diameter d = 25km
d = 25,000m
R = d/2 = 25,000/2
R = 12,500m
Weight w = 690N
Then, the person mass which is constant can be determined using
W =mg
m = W/g
m = 690/9.81
m = 70.34kg
The acceleration due to gravity on the surface of the neutron star is can be determined using
g(star) = GM(star)/R²
g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²
g (star) = 8.49 × 10¹¹ m/s²
Then, the person weight on neutron star is
W = mg
Mass is constant, m = 70.34kg
W = 70.34 × 8.49 × 10¹¹
W = 5.98 × 10¹³ N
The weight of the person on neutron star is 5.98 × 10¹³ N
The best and most correct answer among the choices provided by your question is the second choice or letter C. A solar-powered car converts light energy to mechanical energy.
Solar cars use photovoltaic cells to convert sunlight into energy. Photovoltaic cells are the components in solar panels that convert the sun's energy to electricity<span>. They're made up of semiconductors, usually silicon, that absorb the light.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer: 321 J
Explanation:
Given
Mass of the box 
Force applied is 
Displacement of the box is 
Velocity acquired by the box is 
acceleration associated with it is 

Work done by force is 

change in kinetic energy is 

According to work-energy theorem, work done by all the forces is equal to the change in the kinetic energy
![\Rightarrow W+W_f=\Delta K\quad [W_f=\text{Work done by friction}]\\\\\Rightarrow 375+W_f=54\\\Rightarrow W_f=-321\ J](https://tex.z-dn.net/?f=%5CRightarrow%20W%2BW_f%3D%5CDelta%20K%5Cquad%20%5BW_f%3D%5Ctext%7BWork%20done%20by%20friction%7D%5D%5C%5C%5C%5C%5CRightarrow%20375%2BW_f%3D54%5C%5C%5CRightarrow%20W_f%3D-321%5C%20J)
Therefore, the magnitude of work done by friction is 