1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgesh-ka [11]
3 years ago
5

Find the area of QRS. Round the answer to the nearest tenth.

Mathematics
1 answer:
Tema [17]3 years ago
6 0

Answer:

Option C

Step-by-step explanation:

Area of a triangle given with measures of 2 sides and angle between these sides will be,

Area of a triangle = \frac{1}{2}\text{(a.b)sinC}

Here, a and b are two sides of the triangle and C is the angle between these sides.

From the figure attached,

a = 6, b = 9 and m∠C = 110°

Substitute these values in the formula,

Area of ΔQRS = \frac{1}{2}\text{(a.b)sinC}

                        = \frac{1}{2}{(9\times 6)\text{sin}(110^{\circ})}

                        = 25.37

                        ≈ 25.4 square units

Therefore, Option C will be the answer.

You might be interested in
Please help me thank u so much
alex41 [277]

Answer:

28/5= 5 3/5 15/7= 2 1/7 21/4=5 1/4

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
Describe the translation from f ( x ) = I x I... to f ( x ) = I x - 1 I + 11.
noname [10]
Horizontal shift 1 unit left and vertical shift 11 units up
6 0
2 years ago
Is -49 a rational number? please explain
aleksklad [387]
Yes, because a rational number is any number that can be expressed as a fraction a/b where a/b are both integers, but cannot be zero.
7 0
2 years ago
The intensity, I, of a sound varies inversely with the square of the distance, r, from the source of the sound. Write an equatio
charle [14.2K]

Answer:The  equation relating I, r, and k is I =K/r²

Step-by-step explanation:

The intensity, I, of a sound varies inversely with the square of the distance, r, from the source of the sound can be written as

I ∝ 1/r²

Introducing the constant of proportionality, K we have that

I =K x 1/r²

Therefore , the  equation relating I, r, and k is I =K/r²

7 0
3 years ago
Other questions:
  • A vertical line passes through the point (–3, 5). Which point is also on this line?
    7·1 answer
  • 3 Times minus 16=14math
    14·1 answer
  • If the velocity ratio of a machine is 1.5what will be its ​
    13·1 answer
  • I need help with this
    6·2 answers
  • Pls help i am confused no links
    6·1 answer
  • A rocket ship travels at 2.0×104 miles per hour. If a satellite is 2.5×105 miles from​ Earth, how long will it take the rocket t
    13·1 answer
  • In a probability experiment, Craig rolled a six-sided die 64 times. The die landed on a number greater than three 39 times. What
    13·1 answer
  • What does it mean when my dog is eating grass???
    6·1 answer
  • Use the drop downs to determine which symbols would complete the inequality for the range.
    9·2 answers
  • Solve the following system of equations graphically.<br><br><br><br> x = -5<br><br> y = -6
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!