1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jobisdone [24]
3 years ago
10

Can anyone help???

Mathematics
1 answer:
svp [43]3 years ago
8 0

Answer:

-8x+21

Step-by-step explanation:

Use the distributive property.

You might be interested in
A natural history museum surveyed the people visiting the museum for one month and created a circle graph to show the age of the
marin [14]

Answer:

the right answer is 18 and under for part a for part b the answer is 45 -64

6 0
2 years ago
Read 2 more answers
4f + 5, when f = 3<br> URGENT LOTS OF POINTS ASAP!!!
umka2103 [35]

Answer:

17

Step-by-step explanation:

4(3) + 5 = ?

12 + 5 = 17

5 0
1 year ago
Read 2 more answers
I need help with this Factoring Quadratics question.Can someone help me?
antoniya [11.8K]

If you mean "factor over the rational numbers", then this cannot be factored.

Here's why:

The given expression is in the form ax^2+bx+c. We have

a = 3

b = 19

c = 15

Computing the discriminant gives us

d = b^2 - 4ac

d = 19^2 - 4*3*15

d = 181

Note how this discriminant d value is not a perfect square

This directly leads to the original expression not factorable

We can say that the quadratic is prime

If you were to use the quadratic formula, then you should find that the equation 3x^2+19x+15 = 0 leads to two different roots such that each root is not a rational number. This is another path to show that the original quadratic cannot be factored over the rational numbers.

7 0
3 years ago
PLSSS HELP EASYY MATH HELPPP<br><br> How many of each different 2-D shapes do you see?
kiruha [24]
Yea the answer is 6.
7 0
3 years ago
Please answer both questions math
djyliett [7]

Answer:

3 and perpendicular

Step-by-step explanation:

It's important to remember that equations of lines are always set up in the format of y=mx+c.

y is the y value, m is the gradient/slope, x is the x value and c is the y-intercept.

Therefore, we must always rearrange our line equations so that y is the subject.

In the first question, we are given the equation 2x+6y=12.

We rearrange to make y the subject:

6y = 12-2x

Then, we divide both sides by 6 to have the y isolated:

\frac{6}{6} y = \frac{12}{6}  - \frac{2}{6}x\\\\ y = 2 - \frac{1}{3}x

To find a perpendicular slope, we use the negative reciprocal of the original slope. The negative part of that means we negate the value (it becomes inverse) and the reciprocal part means that we flip the fraction.

So here, the slope is -\frac{1}{3}.

So, the negative reciprocal of that would be 3 because we inverse the sign (the negative becomes positive) and the fraction is flipped to create \frac{3}{1}=3.

So, the perpendicular slope is 3.

In the second question, we have two equations. They both need to be rearranged to isolate the y.

4x-y=5\\4x = 5 + y\\y = 4x - 5\\\\4y = -x-12\\y = -\frac{1}{4}x - 3

Look at the slopes of the two equations. If you look carefully, you will see that they are inverse of each other (one is positive and one is negative) and if you imagine 4 = \frac{4}{1}, the fraction is flipped.

This means that the values are negative reciprocals of each other, meaning the lines are perpendicular.

5 0
1 year ago
Other questions:
  • Tim has a recipe for chocolate mousse. The recipe is for 8 people. The recipe needs 200g of . Tim wants to make chocolate mousse
    14·1 answer
  • What are 5 ways that graph can be misleading ?
    9·2 answers
  • 0.91 divided by -0.13
    10·2 answers
  • The average ice skate size of customers at an ice rink with 200 patrons is 9.5. Assume the data is normally distributed. If the
    14·1 answer
  • Two lines meet at a point that is also the endpoint set up an equation to find the value of w pls need help
    8·1 answer
  • How is 〖−3〗^4and 〖(−3)〗^4similar and different?
    14·1 answer
  • Match each system of linear equations with the correct number of solutions
    5·2 answers
  • 2. Solve the following problems involving simple interest. Recall
    8·1 answer
  • Find the discriminant of the following quadratic equation then state the number of rational, irrational, and imaginary solutions
    7·2 answers
  • ⚠WILL GET BRAINLEST...THE QUESTION IS AT THE BOTTOM ⚠How many solutions does have? O A. Two solutions B. No solutions C. Infinit
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!