<span>One kilometer is equal to 0.621371 miles. Conversely, one mile is equal to 1.609344 kilometers. One liter is equal to 0.264172 gallons, and one gallon is equal to 3.78541103373138 liters. Thus, 12.4 kilometers per liter is equal to 29.16661 miles per gallon as 1 km/l = 2.352145833 mpg.</span>
Answer:
0.006
Step-by-step explanation:
0.00628, has 3 significant digits. Rounding this number to 1 significant digit gives us 0.006
<em>Hoodmemes~</em>
This appears to be about rules of exponents as much as anything. The applicable "definitions, identities, and properties" are
i^0 = 1 . . . . . as is true for any non-zero value to the zero power
i^1 = i . . . . . . as is true for any value to the first power
i^2 = -1 . . . . . from the definition of i
i^3 = -i . . . . . = (i^2)·(i^1) = -1·i = -i
i^n = i^(n mod 4) . . . . . where "n mod 4" is the remainder after division by 4
1. = -3^4·i^(3·2+0+2·4) = -81·i^14 =
812. = i^((3-5)·2+0 = i^-4 =
13. = -2^2·i^(4+2+2+(-1+1+5)·3+0) = -4·i^23 =
4i4. = i^(3+(2+3+4+0+2+5)·2) = i^35 =
-i
Answer:
Shirts = $7
Shorts $17
Step-by-step explanation:
Let:
T - shirts
S - shorts
We can make two equations out of this problem:
4T + 3S = $79
7T + 8S = $185
Through substitution we can solve for one of the unknowns. We make one equation to solve for an unknown

We use the formula of S and insert it into the other equation:

Thus T-shirts are $7 each.
Now that we know T, we can use it to solve for the other unknown. You can use it on any of the formulas.

We know then that Shorts are $17 each.
There are more compact cars (4*10 = 40) compared to trucks (2*10 = 20); however, the pictogram might make it appear that there are more trucks because the individual truck icon is larger compared to an individual compact car icon.
To anyone giving this image a quick glance, they may erroneously conclude that there are more trucks since their eye would notice the trucks first. Also, the person might think there are more trucks because bigger sizes tend to correspond to more proportion.
In real life, a truck is larger than a compact car, but the icons need to be the same size to have the figure not be misleading.
A very similar issue happens with the mid-size cars vs the compact cars as well. The three mid-size car icons span the same total width as the compact cars do, indicating that a reader might mistakenly conclude that there are the same number of mid-size cars compared to compact ones (when that's not true either).