1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka-Z-Leto [24]
3 years ago
15

Hi there, hope everyone is well and staying cool :D

Mathematics
1 answer:
gogolik [260]3 years ago
3 0

Answer:

A) By using the Pythagorean Theorem, we will see that 8^2 + 15^2 = 17^2. If we simplify it, we will find that the hypotenuse of ΔABC = 17

B) approximately 18.79

Step-by-step explanation:

A) In all honesty, you don't really need to look at ΔACD at all for this one. Just use the Pythagorean Theorem (like previously stated) and solve!

***Pythagorean Theorem is  leg^2 + leg^2 = hypotenuse^2

B) Here, you can also use the Pythagorean Theorem! However this time, the equation will be, 8^2 + 17^2 = AD.  

  • 8^2 + 17^2 = 64 +289
  • 64 + 289 = 385
  • \sqrt{385} \\ ≈ 18.79

Hope you do well on the rest of your math problems :D

You might be interested in
A flower bed has a shape of a rectangle 9yards long and 3 yarss wide what is the area in square feet
Maslowich
It should be 81 square feet.

3 yards x 9 yards = 27 yards squares.

It asks for your answer in square feet, so you multiply by 3. This is because there are 3 feet in ever yard.

27 x 3 feet = 81 square feet.
8 0
3 years ago
How do I simplify this?
Anastasy [175]
3/4 + 1 = 1.75 which is equivalent to 7/4
1- 3/4 = 0.25 which is equivalent to 1/4
the problem now looks like 7/4 / 1/4
you cancel out both 4
this problem simplified looks like 7/1
which is equivalent to 7 if you divide
6 0
2 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
A company ships packages through the postal service. One week, the cost of shipping one
DanielleElmas [232]

Answer:

Step-by-step explanation:

For this problem, it says that the company not only shipped packages, but also bought a number of stamps. From the equation 6.70+0.50x, it's fairly easy to say that 6.70 is the packages,

What's not so easy is figuring out whether or not 0.50 is the stamps, or x is. However, there's an easy way to figure it out!

From this one, we would have to use "common sense" (not my words, someone elses). Using "common sense", we have to think, can someone buy 0.50 of a stamp?

Technically yes... But would someone buy 0.5 of a stamp? Not really.

So we can safetly assume that x is the "stamp", and 0.50 is <em>the cost of the stamp</em>.

Hope this helps!

7 0
3 years ago
Insulin is used to regulate sugar in the bloodstream. A dose of 10 units breaks down by about 5% each minute after injection. Ho
s344n2d4d5 [400]

Answer:

Explanation:

• The initial dose of the Insulin = 10 Units

The insulin breaks down by about 5% each minute, therefore:

• The decay rate, r= 5%

We want to determine the time it will take for the remaining dosage to be half (5 units) of the original dose.

We use the exponential decay function:

N(t)=N_o(1-r)^t

Substituting the given values, we have:

\begin{gathered} 5=10(1-0.05)^t \\ \frac{5}{10}=0.95^t \\ 0.5=0.95^t \end{gathered}

To solve for t, we change to logarithm form.

8 0
1 year ago
Other questions:
  • $54000 as ratio 1:3:8
    7·1 answer
  • Someone help with this math question please!!
    12·1 answer
  • Two trains arrived at a station at 2:55 P.M., with one arriving on Track A, and the other arriving on Track B. Trains arrive on
    14·1 answer
  • Which pair of numbers is relatively prime
    5·2 answers
  • How do we use electromagnetic energy?<br> No googled answer
    8·2 answers
  • V/w = 9 for w what are the steps
    5·1 answer
  • Find the fourth term of the
    7·1 answer
  • Suppose the length of the pool in Example 1 is
    8·1 answer
  • Solve the right triangle.<br> Round your answers to the nearest tenth.
    5·1 answer
  • In your own words describe how to find the area of a composite
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!