I hope it's clear enough.
Answer:
Step-by-step explanation:
From the given right-angle triangle
The angle = ∠60°
-
The adjacent to the angle ∠60° is 1/2.
- The opposite to the angle ∠60° is y.
The hypotenuse = x
<u>Determining the value of x:</u>
Using the trigonometric ratio
cos 60° = adjacent / hypotenuse
substituting adjacent = 1/2 and hypotenuse = x


∵ cos (60°) = 1/2

Dividing both sides by 2

Simplify

Thus, the value of hypotenuse x is:
x = 1
<u>Determining the value of y:</u>
Using the trigonometric ratio
sin 60° = opposite / hypotenuse
As we have already determined the value of hypotenuse x = 1
substituting opposite = y and hypotenuse = 1
sin 60° = y/1
y = 1 × sin 60°
∵ 
Therefore, the value of y is:
Summary:
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
Limit Rule [Variable Direct Substitution Exponential]: 
Limit Property [Multiplied Constant]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Solve</u>
- Rewrite [Limit Property - Multiplied Constant]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
- Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%5E4%29)
- Simplify:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%2064)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
Answer:
58 1/2
Step-by-step explanation:
multiply by 3/4