Answer:
Though the question is not specified here, but this information can determine the following quantity: period T= 6 secs, Frequency F=1/6 Hz, speed of rotation V= 2 pi ft/sec and wave length =pi/3 ft
Explanation:
The energy of photon in kJ/mol is 329kJ/mol.
Wavelength of radiation is 370nm. The frequency of given wavelength is
ν = c / λ
ν = 3×10^8 / 370×10^-9
ν = 8.11 × 10^14 s^-1
Now the energy of photon is:
E = hν
E = 6.63×10^-34 J.s/photon × 8.11×10^14s^-1
E = 5.41× 10^-19 J/photon
To find in mole
E = 5.41× 10^-19 × 6.022×10^23
E = 3.29 ×10^ 5 J/mol
So, the energy of mole of photon is equal to 329 kJ/mol.
Learn more about radiation here:
brainly.com/question/18650102
#SPJ4
Answer:
60
first choice = 1/5
second choice = 1/4
third choice = 1/3
5*4*3 = 60 the number of choices
Answer:
1) 883 kgm2
2) 532 kgm2
3) 2.99 rad/s
4) 944 J
5) 6.87 m/s2
6) 1.8 rad/s
Explanation:
1)Suppose the spinning platform disk is solid with a uniform distributed mass. Then its moments of inertia is:

If we treat the person as a point mass, then the total moment of inertia of the system about the center of the disk when the person stands on the rim of the disk:

2) Similarly, he total moment of inertia of the system about the center of the disk when the person stands at the final location 2/3 of the way toward the center of the disk (1/3 of the radius from the center):

3) Since there's no external force, we can apply the law of momentum conservation to calculate the angular velocity at R/3 from the center:



4)Kinetic energy before:

Kinetic energy after:

So the change in kinetic energy is: 2374 - 1430 = 944 J
5) 
6) If the person now walks back to the rim of the disk, then his final angular speed would be back to the original, which is 1.8 rad/s due to conservation of angular momentum.