(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
Answer:
answer is a pedigree chart :)
Explanation:
Answer:
a

b

Explanation:
Generally the force of attraction between this two irons is mathematically represented as
![F = \frac{k * [Q_{Li} ] * [Q_{O} ] }{ r^2}](https://tex.z-dn.net/?f=F%20%3D%20%20%5Cfrac%7Bk%20%2A%20%20%5BQ_%7BLi%7D%20%20%5D%20%2A%20%5BQ_%7BO%7D%20%20%5D%20%20%7D%7B%20r%5E2%7D)
Here k is known as the proportionality constant with value 
substituting -2 for
i.e the charge on oxygen , +1 for
i.e the charge on Lithium and
for r
So


Generally the force of repulsion will be the magnitude but different direction to the force o attraction
So Force of repulsionn is

Answer:
The mass of the mud is 3040000 kg.
Explanation:
Given that,
length = 2.5 km
Width = 0.80 km
Height = 2.0 m
Length of valley = 0.40 km
Width of valley = 0.40 km
Density = 1900 Kg/m³
Area = 4.0 m²
We need to calculate the mass of the mud
Using formula of density


Where, V = volume of mud
= density of mud
Put the value into the formula


Hence, The mass of the mud is 3040000 kg.
Answer:
It remains constant
Explanation:
As we know that buoyant force on an object given as
Fb = ρ Vd g
ρ= Density of fluid
Vd=Volume displace by body
g=10 m/s²
Fb =buoyant force
So from above we can say that buoyant force does not depends on the depth. It only depends on the fluid density and volume displace by body.
So when rock gets deeper and deeper the buoyant force will remain constant.
It remains constant