While it depends on what you eat so say you ate sushi or duck or what ever and you have never ate it before then your body will take a while to digest what its taking in!
For this problem, we use the Beer Lambert's Law. Its usual equation is:
A = ∈LC
where
A is the absorbance
∈ is the molar absorptivity
L is the path length
C is the concentration of the sample solution
As you notice, we only have to find the absorbance. But since we are not given with the molar absorptivity, we will have to use the modified equation that relates % transmittance to absorbance:
A = 2 - log(%T)
A = 2 - log(27.3)
A = 0.5638
% by mass = (mass solute/mass solution)*100%
mass of the solute = 54.7 g
mass of the solution = mass solute + mass solvent=54.7+500=554.7 g
% by mass = (54.7/554.7)*100%≈0.0986*100% = 9.86%
Answer:
See the answer below
Explanation:
<em>Since the experiment is set out to determine the melting point of the white solid, after missing the melting point due to distraction, there are two possible solutions and both involves a repeat of the experiment.</em>
1. The first one is to allow the molten substance to solidify again and then repeat the experiment. This time around, a critical attention should be paid to be able to notice the melting point temperature once the temperature gets to 132 C.
2. The second solution would be discard the molten substance and repeat the experiment with the a new solid one. Similarly, critical attention should be paid once the temperature gets to 132 C since it is sure that the melting point lies within 132 and 138 C.
I believe it’s B. At least thats what makes sense for me.