y = sqrt(x) .... parent function
y = sqrt(x+2) .... replace x with x+2 to shift 2 units to the left
y = sqrt(x+2)+3 ... add on 3 to move 3 units up
y = sqrt(-x+2)+3 ... replace x with -x to reflect over y axis
<h3>Answer: y = sqrt(-x+2)+3</h3>
Answer:
( √15 + 8)/7
Step-by-step explanation:
TanA = -√15
.we are to find tan(A-π/4).
In trigonometry
Tan(A-B) = TanA - TanB/1+ tanAtanB
Hence:
tan(A-π/4) = TanA - Tanπ/4/1+ tanAtanπ/4
Substitute tan A value into the formula
tan(A-π/4) = -√15-tanπ/4 / 1+(-√15)(tanπ/4
tan(A-π/4) = -√15-1/1-√15
Rationalize
-√15-1/1-√15 × 1+√15/1+√15
= -√15-√225-1-√15/(1-√225)
= -2√15-15-1/1-15
= -2√15 -16/(-14)
= -2(√15+8)/-14
= √15 + 8/7
Hence the required value is ( √15 + 8)/7
Option 3 or 4 would be your correct answer
(10x+5)*(9x-2)
90x^2-20x+45x-10
90x^2+25x-10