1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lilit [14]
3 years ago
8

Which of these would not make you question the results of a study?

Mathematics
1 answer:
Neporo4naja [7]3 years ago
3 0
C. !!! hope this helps
You might be interested in
If the farmer has 116 feet of fencing, what are the dimensions of the region with the largest area?
Savatey [412]
Yes ye yuh na Lyin bru u cappin
3 0
3 years ago
Read 2 more answers
The quotient of a number and four decreased by ten is two. What is the number
MakcuM [25]
X divided by 4 - 10=2 x=48
3 0
3 years ago
Is pendalum is a kind of
Anvisha [2.4K]
Measuring tool or observer of force being applied to the ball
6 0
3 years ago
A chef prepares 1 1/2 gallons of soup in big bowl
vesna_86 [32]
Convert gal to cup
16 cups = 1 gallon
or 16 cuos per gallon
or 16 cups/gallon

1.5 gallons × 16 cups/gallon = 24 cups
(gallons cancel out)


6 0
3 years ago
Read 2 more answers
The length l, width w, and height h of a box change with time. At a certain instant the dimensions are l = 3 m and w = h = 6 m,
Gemiola [76]

Answer:

a) The rate of change associated with the volume of the box is 54 cubic meters per second, b) The rate of change associated with the surface area of the box is 18 square meters per second, c) The rate of change of the length of the diagonal is -1 meters per second.

Step-by-step explanation:

a) Given that box is a parallelepiped, the volume of the parallelepiped, measured in cubic meters, is represented by this formula:

V = w \cdot h \cdot l

Where:

w - Width, measured in meters.

h - Height, measured in meters.

l - Length, measured in meters.

The rate of change in the volume of the box, measured in cubic meters per second, is deducted by deriving the volume function in terms of time:

\dot V = h\cdot l \cdot \dot w + w\cdot l \cdot \dot h + w\cdot h \cdot \dot l

Where \dot w, \dot h and \dot l are the rates of change related to the width, height and length, measured in meters per second.

Given that w = 6\,m, h = 6\,m, l = 3\,m, \dot w =3\,\frac{m}{s}, \dot h = -6\,\frac{m}{s} and \dot l = 3\,\frac{m}{s}, the rate of change in the volume of the box is:

\dot V = (6\,m)\cdot (3\,m)\cdot \left(3\,\frac{m}{s} \right)+(6\,m)\cdot (3\,m)\cdot \left(-6\,\frac{m}{s} \right)+(6\,m)\cdot (6\,m)\cdot \left(3\,\frac{m}{s}\right)

\dot V = 54\,\frac{m^{3}}{s}

The rate of change associated with the volume of the box is 54 cubic meters per second.

b) The surface area of the parallelepiped, measured in square meters, is represented by this model:

A_{s} = 2\cdot (w\cdot l + l\cdot h + w\cdot h)

The rate of change in the surface area of the box, measured in square meters per second, is deducted by deriving the surface area function in terms of time:

\dot A_{s} = 2\cdot (l+h)\cdot \dot w + 2\cdot (w+h)\cdot \dot l + 2\cdot (w+l)\cdot \dot h

Given that w = 6\,m, h = 6\,m, l = 3\,m, \dot w =3\,\frac{m}{s}, \dot h = -6\,\frac{m}{s} and \dot l = 3\,\frac{m}{s}, the rate of change in the surface area of the box is:

\dot A_{s} = 2\cdot (6\,m + 3\,m)\cdot \left(3\,\frac{m}{s} \right) + 2\cdot (6\,m+6\,m)\cdot \left(3\,\frac{m}{s} \right) + 2\cdot (6\,m + 3\,m)\cdot \left(-6\,\frac{m}{s} \right)

\dot A_{s} = 18\,\frac{m^{2}}{s}

The rate of change associated with the surface area of the box is 18 square meters per second.

c) The length of the diagonal, measured in meters, is represented by the following Pythagorean identity:

r^{2} = w^{2}+h^{2}+l^{2}

The rate of change in the surface area of the box, measured in square meters per second, is deducted by deriving the surface area function in terms of time before simplification:

2\cdot r \cdot \dot r = 2\cdot w \cdot \dot w + 2\cdot h \cdot \dot h + 2\cdot l \cdot \dot l

r\cdot \dot r = w\cdot \dot w + h\cdot \dot h + l\cdot \dot l

\dot r = \frac{w\cdot \dot w + h \cdot \dot h + l \cdot \dot l}{\sqrt{w^{2}+h^{2}+l^{2}}}

Given that w = 6\,m, h = 6\,m, l = 3\,m, \dot w =3\,\frac{m}{s}, \dot h = -6\,\frac{m}{s} and \dot l = 3\,\frac{m}{s}, the rate of change in the length of the diagonal of the box is:

\dot r = \frac{(6\,m)\cdot \left(3\,\frac{m}{s} \right)+(6\,m)\cdot \left(-6\,\frac{m}{s} \right)+(3\,m)\cdot \left(3\,\frac{m}{s} \right)}{\sqrt{(6\,m)^{2}+(6\,m)^{2}+(3\,m)^{2}}}

\dot r = -1\,\frac{m}{s}

The rate of change of the length of the diagonal is -1 meters per second.

6 0
3 years ago
Other questions:
  • Solve for x: 3 < x + 3 < 6
    12·1 answer
  • What is the answer to (-2)^3-2^3
    14·1 answer
  • Divide 36 by the difference of 16 and 4
    6·2 answers
  • PLEASE HELP!!! (55 pts)
    6·2 answers
  • the value of a car when purchased in 2008 was $21,500. It loses 12% of its value every year. What is the value of the car in 201
    5·1 answer
  • Tom is afraid of heights above 9 feet. He is asked to repair a side of a high deck. The bottom of a ladder must be placed 6 feet
    11·2 answers
  • Which statements are true about reflections? Check all that apply
    14·2 answers
  • **!!URGENT!!** A line passes through the points (9,-2) and (-1,8). What is the y-intercept of this line?
    9·1 answer
  • How can I solve this 9x-5-(6-)​
    10·2 answers
  • 15×15×2+10-1=?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!