
Let the capacity of bus be x students
And van be y students, now ;
From the given statements we get two equations ~


multiply the equation (2) with 2 [ it won't change the values ]


Now, deduct equation (1) from equation (3)




Therefore each bus can carry (x) = 45 students
Now, plug the value of x in equation (1) to find y ~







Hence, each van can carry (y) = 17 students in total.
Answer:
1. x =0; x = -7
2. x = -3; x = 10
3. x = -5; x = -4
Step-by-step explanation:
(1). 6x² + 42x = 0
6x (x + 7) = 0
6x = 0. OR. x + 7 = 0
x = 0/6. x = 0 - 7
x = 0. x = -7
x = 0
x = -7
(2). x² - 7x - 30 = 0
The factors here are (3, -10)
x² - 10x + 3x - 30 = 0
x ( x - 10) + 3 ( x - 10) = 0
(x + 3) ( x - 10) = 0
x + 3 = 0 OR. x - 10 = 0
x = 0-3. x = 0 + 10
x = -3. x = 10
x = -3
x = 10
(3). x² + 9x + 20 = 0
The factors are ( 4, 5)
x² + 4x + 5x + 20 = 0
x ( x + 4) + 5 ( x + 4) = 0
(x + 5) (x + 4) = 0
x + 5 = 0 . OR. x + 4 = 0
x = 0-5. x = 0 - 4
x = -5. x = -4
x = -5
x = -4
Answer: x+8
Step-by-step explanation:
Answer: 
Step-by-step explanation:
Three-fifths of the sum of 9 and f is
=
=
If original program is x hours long we have the equation-
x - 0.17x = 1.5
0.83x = 1.5
x = 1.5 / 0.83 = 1.81 hours long ( about 1 hour 49 minutes) Answer