Let the oranges cost = x
Let the apples cost = y
According to given conditions, equation becomes:
.... (1)
.....(2)
Multiplying equation (1) by 8 and equation (2) by 12 to get y
96x+48y=43.04 .... (3)
96x+60y=44.16 .... (4)
Now subtracting both equations we get,
12y = 1.12
y = 0.093
Hence, cost of 1 apple = $0.093
As 12x+6y=5.38
12x+6(0.093)=5.38
12x=4.822
x = 0.40
Hence, cost of 1 orange = $0.40
Answer:

Step-by-step explanation:
step 1
Find the area of the square-shaped bedroom

step 2
calculate the total spend
Multiply the area of the bedroom by 
so

Answer:
a) 
b) 0.0620
Step-by-step explanation:
We are given the following in the question:
Population mean,
= 6
Variance,
= 12
a) Value of 
We know that

Dividing the two equations, we get,

b) probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
We can write the probability density function as:

We have to evaluate:
![P(x >12)\\\\= \dfrac{1}{16}\displaystyle\int^{\infty}_{12}f(x)dx\\\\=\dfrac{1}{16}\bigg[-2x^2e^{-\frac{x}{2}}-2\displaystyle\int xe^{-\frac{x}{2}}dx}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[x^2e^{-\frac{x}{2}}+4xe^{-\frac{x}{2}}+8e^{-\frac{x}{2}}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[(\infty)^2e^{-\frac{\infty}{2}}+4(\infty)e^{-\frac{\infty}{2}}+8e^{-\frac{\infty}{2}} -( (12)^2e^{-\frac{12}{2}}+4(12)e^{-\frac{12}{2}}+8e^{-\frac{12}{2}})\bigg]\\\\=0.0620](https://tex.z-dn.net/?f=P%28x%20%3E12%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B16%7D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_%7B12%7Df%28x%29dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B16%7D%5Cbigg%5B-2x%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D-2%5Cdisplaystyle%5Cint%20xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7Ddx%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5Bx%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B4xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5B%28%5Cinfty%29%5E2e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B4%28%5Cinfty%29e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%20-%28%20%2812%29%5E2e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B4%2812%29e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%29%5Cbigg%5D%5C%5C%5C%5C%3D0.0620)
0.0620 is the required probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
Answer:
The answer to your question is slope = 1/7
Step-by-step explanation: