Answer:
<em>8.880,8.808,8.018,8.008</em>
Answer: 1/216
Step-by-step explanation: please mark me brainly
Answer:
slope = 
Step-by-step explanation:
Calculate the slope m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (0, - 1) and (x₂, y₂ ) = (2, 4) ← 2 points on the line
m =
= 
Answer:
c. add 4 on each side and multiply by 8
Step-by-step explanation:
Answer:
1)The rocket hit the ground at 
2)The maximum height of the rocket = 12.468 feet
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given equation
y = -2 x² + 5 x + 7 ...(i)
Differentiating equation (i) with respective to 'x' , we get

Equating zero

⇒ -4 x +5 =0
⇒ -4 x = -5
⇒
<em> The rocket hit the ground at </em>
<em></em>
<u><em>Step(ii):</em></u>-
...(ii)
Again differentiating equation (ii) with respective to 'x' , we get

The maximum height at x = 
y = -2 x² + 5 x + 7



<em>The maximum height of the rocket = 12.468 feet</em>