Check the picture below.
make sure your calculator is in Degree mode.
Answer:
g = -3
Step-by-step explanation:
Answer:
If thrown up with the same speed, the ball will go highest in Mars, and also it would take the ball longest to reach the maximum and as well to return to the ground.
Step-by-step explanation:
Keep in mind that the gravity on Mars; surface is less (about just 38%) of the acceleration of gravity on Earth's surface. Then when we use the kinematic formulas:

the acceleration (which by the way is a negative number since acts opposite the initial velocity and displacement when we throw an object up on either planet.
Therefore, throwing the ball straight up makes the time for when the object stops going up and starts coming down (at the maximum height the object gets) the following:

When we use this to replace the 't" in the displacement formula, we et:

This tells us that the smaller the value of "g", the highest the ball will go (g is in the denominator so a small value makes the quotient larger)
And we can also answer the question about time, since given the same initial velocity
, the smaller the value of "g", the larger the value for the time to reach the maximum, and similarly to reach the ground when coming back down, since the acceleration is smaller (will take longer in Mars to cover the same distance)
When a shape is rotated, it must be rotated around a point.
<em>See attachment for the image of each rotation.</em>
To do this, the top coordinates of the X shape will be transformed using the appropriate rotation rule; the same rule will then be applied to the other parts of the X shape.
The top coordinates of the X shape are:




For 90 degrees counterclockwise rotation, the rule is:

So, we have:




For 180 degrees rotation, the rule is:

So, we have:




For 270 degrees counter rotation, the rule is:

So, we have:




See attachment for the image of each rotation
Read more about rotations at:
brainly.com/question/1571997
Answer:
$57,791.8
Step-by-step explanation:
Each acre cost $43.60.
If the famer wants to harvest 1325.5 acres he has to pay 43.6 per acre
43.60×1325.5= 57,791.8