Answer:
the time taken for the radioactive element to decay to 1 g is 304.8 s.
Step-by-step explanation:
Given;
half-life of the given Dubnium = 34 s
initial mass of the given Dubnium, m₀ = 500 grams
final mass of the element, mf = 1 g
The time taken for the radioactive element to decay to its final mass is calculated as follows;
![1 = 500 (0.5)^{\frac{t}{34}} \\\\\frac{1}{500} = (0.5)^{\frac{t}{34}}\\\\log(\frac{1}{500}) = log [(0.5)^{\frac{t}{34}}]\\\\log(\frac{1}{500}) = \frac{t}{34} log(0.5)\\\\-2.699 = \frac{t}{34} (-0.301)\\\\t = \frac{2.699 \times 34}{0.301} \\\\t = 304.8 \ s](https://tex.z-dn.net/?f=1%20%3D%20500%20%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%20%5C%5C%5C%5C%5Cfrac%7B1%7D%7B500%7D%20%3D%20%20%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%5C%5C%5C%5Clog%28%5Cfrac%7B1%7D%7B500%7D%29%20%3D%20log%20%5B%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%5D%5C%5C%5C%5Clog%28%5Cfrac%7B1%7D%7B500%7D%29%20%20%3D%20%5Cfrac%7Bt%7D%7B34%7D%20log%280.5%29%5C%5C%5C%5C-2.699%20%3D%20%5Cfrac%7Bt%7D%7B34%7D%20%28-0.301%29%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B2.699%20%5Ctimes%2034%7D%7B0.301%7D%20%5C%5C%5C%5Ct%20%3D%20304.8%20%5C%20s)
Therefore, the time taken for the radioactive element to decay to 1 g is 304.8 s.
Answer:
LCM is 504. GCF is 42
Step-by-step explanation:
Answer:
Option 4: <u>(2x + 16)° + (x)° = 180°</u>
Step-by-step explanation:
See the attached figure.
For a quadrilateral inscribed in a circle
The opposite angles are supplementary.
So, ∠D + ∠B = 180°
From the figure:
∠B = x° and ∠D = (2x+16)°
∴ <u>(2x + 16)° + (x)° = 180°</u>
3x(1.05) = 3.15x
1.05x + 1.05x + 1.05x = 3.15x