Answer:
4.03dm³
Explanation:
The reaction expression is given as:
3H₂ + N₂ → 2NH₃
Volume of hydrogen = 12dm³
AT rtp:
1 mole of gas occupies volume of 22.4dm³
x mole of hydrogen will occupy a volume of 12dm³
Number of moles of hydrogen =
= 0.54mole
From the balanced reaction equation:
3 mole of hydrogen gas combines with 1 mole of Nitrogen gas
0.54 mole of hydrogen as will therefore combine with
= 0.18moles of nitrogen gas
Since ;
1 mole of gas occupies a volume of 22.4dm³
0.18moles of Nitrogen gas will occupy 0.18 x 22.4 = 4.03dm³
Answer:
A small positively charged nucleus surrounded by revolving negatively charged electrons in fixed orbits
The specific heat of aluminum is 0.902 J/gC. E=m*cp*delta T, or
125*0.902*(95.5-19)= 8630 J
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84

and replacing in the expression Q = m*L you get:
Q=172 g*84 
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>