It's hard to relate a mole to carbon or sulfur. Imagine if I walked up to you and said, "What's the relation between a dozen and donuts?"
A mole is a form of measurement for atoms, more specifically, 6.02 * 10^23 atoms. I suppose you could relate it to Carbon or Sulfur, since the number of atoms of each are usually measured in moles.
Carbon and Sulfur don't have a set number of moles (Just like donuts don't have to be a dozen), so it's hard to answer your second question.
In the atomic table, the number you see under the element is the molar mass, which is the weight of an a mole of the element. In this way, I guess there's a mole of Carbon and Sulfur present, if we're looking at the periodic table.
-T.B.
Answer:
Here, we are required to determine the total energy of the reaction and determine if the reaction is an endothermic or exothermic reaction.
The correct answer is option C.
First, we need to determine the energy of the reaction.
The energy of the reaction is the change in enthalpy between the product and reactants.
Change of Enthalpy,
Hreaction = Hproduct - Hreactant.
Therefore, for the reaction above, the change in enthalpy is:
Hreaction = 590kJ/mol - 581kJ/mol.
Hreaction = 9kJ/mol.
Hence, since the reaction has an enthalpy change of 9kJ/mol, the reaction is endothermic (i.e energy is absorbed).
Explanation:
Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

Answer:
67.1%
Explanation:
Based on the chemical equation, if we determine the moles of sodium carbonate, we can find the moles of NaHCO₃ that reacted and its mass, thus:
<em>Moles Na₂CO₃ - 105.99g/mol-:</em>
6.35g * (1mol / 105.99g) = 0.0599 moles of Na₂CO₃ are produced.
As 1 mole of sodium carbonate is produced when 2 moles of NaHCO₃ reacted, moles of NaHCO₃ that reacted are:
0.0599 moles of Na₂CO₃ * (2 moles NaHCO₃ / 1 mole Na₂CO₃) = 0.1198 moles of NaHCO₃
And the mass of NaHCO₃ in the sample (Molar mass: 84g/mol):
0.1198 moles of NaHCO₃ * (84g / mol) = 10.06g of NaHCO₃ were in the original sample.
And percent of NaHCO₃ in the sample is:
10.06g NaHCO₃ / 15g Sample * 100 =
<h3>67.1%</h3>
The pressure calculated as the difference between the net hydrostatic pressure and the net colloid osmotic pressure is known as: filtration pressure.
<h3>What is pressure?</h3>
Pressure can be defined as a measure of the force exerted per unit area of an object or body. Thus, it is usually measured in Newton per meter square.
<h3>The types of pressure.</h3>
In Science, there are different types of pressure and these include the following:
Filtration pressure is a pressure that is typically calculated as the difference between the net hydrostatic pressure and the net colloid osmotic pressure. Also, it promotes the filtration of fluid through a membrane.
Read more on pressure here: brainly.com/question/24827501