Answer:
a, b, d y e
Explanation:
We can define thermogenesis as the method of production of lime or temperature that a living body generates, in biology it is studied that this does not occur in all animals, but is seen in so-called warm blood and some plants, there are three types of processes identified in animals:
NEAT: defined as thermogenesis that occurs without the presence of physical activity
DIT: defined as the thermogenesis that occurs with physical activity
EAT: defined as the thermogenesis that occurs with the consumption of food or diet
Thermogenesis under the thermogenin protein found in brown adipose tissue produces a disengagement of protons within the mitochondria, prevents ATP synthesis and is capable of inducing temperature with the flow of protons, it also intervenes by increasing glycolysis, lipogenesis and gluconeogenesis with which its final result in these processes is the production of energy. The effect of the sympathetic nervous system and thyroid hormones that can balance heat production without generating abnormal movements such as tremor is also recognized.
Thus we deduce that:
electron transport allows heat flow without causing tremors
Thermogenin is involved in allowing protons to enter the mitochondria and the ATP production process is carried out.
hydrolysis of fatty acids occurs in the presence of norepinephrine
in brown adipocytes ATP synthase can be avoided
I believe you mean mid-ocean ridge?
If so, true.
A mid-ocean ridge or mid-oceanic ridge is an underwater mountain range, formed by plate tectonics.
This uplifting of the ocean floor occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.
A mid-ocean ridge demarcates the boundary between two tectonic plates, and consequently is termed a divergent plate boundary.
Answer:
Carbon Dioxide
Explanation:
google plus proof below I guess
<em><u>please mark brainliest</u></em>
A firework display because it’s not moving it’s a display
Cell membranes protect and organize cells. All cells have an outer plasma membrane that regulates not only what enters the cell, but also how much of any given substance comes in. Unlike prokaryotes, eukaryotic cells also possess internal membranes that encase their organelles and control the exchange of essential cell components. Both types of membranes have a specialized structure that facilitates their gatekeeping function.