Answer:
Four daughter cells are produced each with 40 chromosomes. The daughter cells would exhibit genetic variations and would not be genetically identical to each other.
Explanation:
Meiosis is a cell division that forms four daughter cells from one parent cell as two sequential division meiosis I and meiosis II do not include any DNA replication between them. Crossing over during prophase-I of meiosis-I includes the exchange of genetic segments and occurs between the homologous chromosomes. It produces new gene combinations in the daughter cells which were otherwise not present in the parent cell.
Since there is no DNA replication between meiosis I and meiosis II, the daughter cells have half the number of the chromosomes compared to the parent cell. This occurs as homologous chromosomes move towards the opposite pole during anaphase I.
Therefore, a parent cell with 80 chromosomes will make a total of 4 daughter cells by meiosis. Each daughter cell would have 40 chromosomes. These daughter cells would have some new gene combinations and would be genetically dissimilar among themselves.
Liquids can evaporate at room temperature<span> and at an average air pressure. Evaporation happens when atoms or molecules release from the liquid and </span>turn into<span> a vapor. </span>
The answer is A.True but they are not the only ways in which this can occur.
Answer:
In an individual's molecular and cellular level, the heterozygote alleles are preferred over the homozygote alleles. In humans, the heterozygote alleles are found at a locus of beta polypeptide subunit of hemoglobin, while on the other hand, the homozygous alleles found at a similar locus are prone to sickle cell disease.
The individuals carrying homozygous alleles exhibit sickle-shaped RBCs and they also possess low oxygen-carrying capacity, which ultimately results in brain, kidney, or heart failure. However, in the case of heterozygous alleles, the configurations of RBCs are of two kinds, that is, normal shaped and sickle-shaped. Thus, there are not enough sickle-shaped cells to result in the condition.
The heterozygote alleles are resistant to malaria, thus, in tropical areas, where malaria is a prime issue the heterozygote alleles are preferred over the homozygote dominant alleles as they are vulnerable to the infection and over the homozygote recessive alleles who has sickle cell disease.