1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
3 years ago
12

1, 4, 13, 40, 121 what is the next number in the pattern

Mathematics
1 answer:
mart [117]3 years ago
7 0
Add powers of 3.
1 + 3 = 4
4 + 9 = 13 = 4 + 3^2
13 + 27 = 40 = 13 + 3^3
40 + 81 = 121 = 40 + 3^4
Now you need to add 3^5 to 121.

121 + 3^5 = 121 + 243 = 364
You might be interested in
Okay Ju|ian Foley simplifies this polynomial and then write it in standard form if Ju|ian wrote it the last term
Fudgin [204]

Answer:

the second choice

Step-by-step explanation:

8 0
3 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
2 years ago
As a contestant on a televised game show, Daniel gets to spin the big prize wheel, which has a diameter of 4 meters. What is the
shusha [124]
Area of a circle = pir^2
The radius is half the diameter so is 2 metres
So r^2 is 4
So the answer is 4pi or 12.57 metres squared
Let me know if you have any questions
8 0
3 years ago
The angles in a triangle are in the ratio 1:2:3 a) Show that the triangle is a right -angled triangle b) The hypotenuse of the t
Hitman42 [59]

Answer:

8.5 cm

Step-by-step explanation:

Angles of the triangle:

  • x+2x+3x= 180
  • 6x= 180
  • x= 30
  • 30°, 60° and 90°

Right triangle as it has 90° angle

Sides are a, b and 19 cm

  • sin 30°= a/19 ⇒ a= 19 sin 30°= 19*0.5= 8.5 cm  = shortest side
  • sin 60°= b/19 ⇒ b= 19 sin 60°= 19*0.866= 16.45 cm
5 0
3 years ago
A) –2n + 9m – 17p
finlep [7]
-2n + 9mn - 17np

All you do is simplify the equation by distributing and multiplying the 1/3n to each of the numbers.

Hope this helps!
6 0
3 years ago
Read 2 more answers
Other questions:
  • Please solve this!!!!!
    12·1 answer
  • Find an equation for the horizontal line that passes through the point (10 , -13 )
    12·1 answer
  • Everyone has the right to influence tax policy.
    8·1 answer
  • How do I turn 500 into a decimal
    5·2 answers
  • Two more than twice a number is less than negative fourteen
    5·1 answer
  • What is the decimal equivalent of 37%
    7·2 answers
  • Sammy was selling tickets for the football game. He sold five more adult tickets than senior tickets and twice as many children'
    9·1 answer
  • The coordinate plane shown below shows the locations of the library and park in the town where Rasheed lives.
    10·1 answer
  • 3x + 2z - 4y - 6 + 4z + 7y
    14·1 answer
  • Which of these sequences are arithmetic? Check all that apply.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!