Answer:
BK=9
Step-by-step explanation:
A midsegment is one half of the length of the base. So, If the base, which is ST is 18, the midsegment will be 18/2=9
The region(s) represent the intersection of Set A and Set B (A∩B) is region II
<h3>How to determine which region(s) represent the intersection of Set A and Set B (A∩B)?</h3>
The complete question is added as an attachment
The universal set is given as:
Set U
While the subsets are:
The intersection of set A and set B is the region that is common in set A and set B
From the attached figure, we have the region that is common in set A and set B to be region II
This means that
The intersection of set A and set B is the region II
Hence, the region(s) represent the intersection of Set A and Set B (A∩B) is region II
Read more about sets at:
brainly.com/question/24713052
#SPJ1
1.004 * 10^5
all scientific notation equations have to be a number greater than 1 but less than 10
then multiplied by 10 to the power of (move the decimal point to the right however many times you need, in this case 5) :)
A straight line is 180°. So you can do:
(15x - 4) + (5x - 8) = 180 Simplify
20x - 12 = 180
20x = 192 Find the value of x
x = 9.6
m∠ABD = 15x - 4 Plug in x = 9.6
m∠ABD = 15(9.6) - 4 = 144 - 4 = 140°
m∠DBC = 5x - 8 Plug in 9.6
m∠DBC = 5(9.6) - 8 = 48 - 8 = 40°