Answer:
a. ATP and NADPH
Explanation:
Light-dependent reactions of photosynthesis include splitting of water in the presence of sunlight and release of electrons. The electrons move from the reaction center of the PS-II via electron carriers to the PS-I. From the reaction center of PS-I, the electrons finally reach NADP reductase and reduce NADP into NADPH.
During this electron transfer via electron carriers, a proton concentration gradient is generated across the thylakoid membrane. The energy of this gradient is used to drive ATP synthesis. ATP and NADPH formed during the light-dependent phase of photosynthesis are then used during the reactions of the Calvin cycle.
Answer:
ATP synthase would be unable to produce ATP
Explanation:
ATP synthase depends on the proton gradient in the intermembrane space to enable it to produce ATP. As a consequence of this, the toxin will make it inactive. Oxidative phosphorylation is now inhibited in this case, as opposed to substrate-level phosphorylation.
Pyruvate is a product of glycolysis, and it will not be affected by a toxin. NADH is very important in the establishing of a proton gradient, so it is expected that it would be unable to be oxidized due to the toxin. Protons produced in the conversion of NADH to NAD+ actually establish the proton gradient. If the gradient is absent, NADH is then not likely to be oxidized.
Answer: The answer is B while neutrons and electrons are usually the same in a given atom protons are always consistent.
The difference is really simple, it's basically whether it's an plant or animal
A, a node is where the different section either split or interconnect in a cladogram.