First , in order to find the answer you need to add the add the numerators which are 5 and 2 = 7 and then you need to find a common denominator.
X-int: (square root of 31 + 6,0) & (square root of 31-6,0)
Y-int: (0,5)
Vertex: (6,-31)
AOS: x=6
Max/Min Value: (6,-31)
Thank you for posting your question here. I hope the answer below will help.
Vo=110 feet per second
<span>ho=2 feet </span>
<span>So, h(t) = -16t^2 +110t +2 </span>
<span>Take the derivative: h'(t) = 110 -32t </span>
<span>The maximum height will be at the inflection when the derivative crosses the x-axis aka when h'(t)=0. </span>
<span>So, set h'(t)=0 and solve for t: </span>
<span>0 = 110 -32t </span>
<span>-110 = -32t </span>
<span>t=3.4375 </span>
<span>t=3.44 seconds </span>
Answer:
5/6
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
We can simplify this fraction down further by divide both numerator and denominator by 2:
10/2 = 5
12/2 = 6
5/6 will be equivalent to 10/12
Answer:
a. 25.98i - 15j mi/h
b. 1.71i + 4.7j mi/h
c. 27.69i -10.3j mi/h
Step-by-step explanation:
a. Identify the ship's vector
Since the ship moves through water at 30 miles per hour at an angle of 30° south of east, which is in the fourth quadrant. So, the x-component of the ship's velocity is v₁ = 30cos30° = 25.98 mi/h and the y-component of the ship's velocity is v₂ = -30sin30° = -15 mi/h
Thus the ship's velocity vector as ship moves through the water v = v₁i + v₂j = 25.98i + (-15)j = 25.98i - 15j mi/h
b. Identify the water current's vector
Also, since the water is moving at 5 miles per hour at an angle of 20° south of east, this implies that it is moving at an angle 90° - 20° = 70° east of north, which is in the first quadrant. So, the x-component of the water's velocity is v₃ = 5cos70° = 1.71 mi/h and the y-component of the water's velocity is v₄ = 5sin70° = 4.7 mi/h
Thus the ship's velocity vector v' = v₃i + v₄j = 1.71i + 4.7j mi/h
c. Identify the vector representing the ship's actual motion.
The velocity vector representing the ship's actual motion is V = velocity vector of ship as ship moves through water + velocity vector of water current.
V = v + v'
= 25.98i - 15j mi/h + 1.71i + 4.7j mi/h
= (25.98i + 1.71i + 4.7j - 15j )mi/h
= 27.68i -10.3j mi/h