A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Answer:
both
Explanation:
Carbon in the air around the living thing is moving in and out of its lungs. The movement is occurring at the same time. This is one of the most important gaseous exchange important to life.
- The goats takes in oxygen gas from the surrounding and releases carbon dioxide in the process.
- But, air is actually drawn in by the goat which is a mixture of several gases.
- Air contains carbon dioxide which is a rich source of carbon
- With the carbon dioxide from respiratory processes, the goat ejects and breathes out this waste carbon matter.
- Therefore, the gaseous exchange in a goat involves the movement of carbon in and out of the air.


ok, now press calculator. i dont have it now.
Answer:
The pH of a solution that has a [OH-] of 5.08x10^-5 M is 5
Explanation:
just took the test
onedg2020
<h2>Answer:</h2>
<em>8.67kJ/mol</em>
<h2>Explanations</h2>
The formula for calculating the amount of heat absorbed by the water is given as:

Determine the moles of KI

Since heat is lost, hence the enthalpy change of the solution will be negative that is:

Determine the enthalpy of solution in kJ•mol-1

Hence the enthalpy of solution in kJ•mol-1 for KI is 8.67kJ/mol