Answer:
the answer to this is O hypothesis
Answer: Option (a) is the correct answer.
Explanation:
Transmutation involves the conversion of one chemical element into another chemical element. This change occurs when an element or isotope passes through a number of reactions. It is a natural process and happens when there is a radioactive decay.
Hence, it is also a nuclear change as it occurs when there is a change in the nucleus of an atom. As this change can be due to the nuclear decay so as a result there will be some change in energy also. It is the process where one element converts into another using bombardment with high energy particles.
Thus, we can conclude that transmutation involves is a nuclear change.
A is obviously out because it leads to a volume of 125.0 milliliters of the new solution and gives you a lower concentration than you were aiming for.
D is out because you are adding 75 milliliters of the stock solution, so your concentration would be too high. You only need 25.0 milometers of stock solution per 100 milliliters of the new solution.
C is also out because it leads to 50.0 milliliters stock solution per 100 milliliters of the new solution and hence the wrong concentration.
B is by default the correct answer. It also details the correct technique. First you add the stock solution (This you know from your calculations to be 25 milliliters.) then you add the water up to the volume you needed. (Because the calculations only tell you the total volume of water not what you need to add) You also add the water last so you can rinse the neck of the flask to make sure you also get all the stock solution residue into the stock solution.
I would add the final step of stirring, but B is the only answer that can be correct.
Answer:
figure is attached
Explanation:
When we treat alcohol with H₂SO₄ we get elimination as the major product.
As we can see in the given reaction that in step 1 the lone pair of electrons of oxygen attached to the alcohol make a bond with the hydrogen of H₂SO₄.
In the 2nd step H₂O gets detached from the parent ring which generated a positive charge on the ring.
In the 3rd step elimination of hydrogen from the carbon next to the carbonium carbon results into formation of an alkene.
Answer:
Number of moles = 3.73 mol
Explanation:
Given data:
Mass of LiCl = 158 g
Number of moles = ?
Solution:
Formula:
Number of moles = mass/ molar mass
Molar mass of LiCl = 42.4 g/mol
Number of moles = 158 g / 42.4 g/mol
Number of moles = 3.73 mol