Factor the equation to give



By the zero product property, either x^2=0 or (3x^2+12-6x)=0 or both.
If x^2=0, then x=0
if (3x^2+12-6x)=0, we use the quadratic formula to solve for x
where x=1 ± √ (3) i
Answer: the roots of <span>3x^4+12x^2=6x^3 are {0 (multiplicity 2), 1+√3 i, 1-√3 i}</span>
Answer:
- g(- x) = - 70 - 3x
Step-by-step explanation:
to evaluate g(- x) substitute x = - x into g(x)
g(- x) = 70 - 3(- x) = 70 + 3x, hence
- g(- x) = - (70 + 3x) = - 70 - 3x
Answer:0.015625
Step-by-step explanation:
Answer:
-38
Step-by-step explanation:
Log₄20-log₄ 45+log₄144=
log₄(20/45)+log₄144= (log_a b- log_a c=log_a (b/c) )
log₄[(20*144)/45]= (log_a b +log_a c=log_a (b*c) )
log₄(2880/45)=
log₄(64)=n ⇔ 4^n=64 (log_a x=n ⇔ a^n=x)
4^n=4³ ⇒n=3 (64=4*4*4=4³)
Answer: log₄20-log₄ 45+log₄144=3