Solve for x:
-3 (3 x + 15) - (x + 10) = 35
-3 (3 x + 15) = -9 x - 45:
-9 x - 45 - (x + 10) = 35
-(x + 10) = -x - 10:
-9 x + -x - 10 - 45 = 35
Grouping like terms, -x - 9 x - 45 - 10 = (-9 x - x) + (-45 - 10):
(-9 x - x) + (-45 - 10) = 35
-9 x - x = -10 x:
-10 x + (-45 - 10) = 35
-45 - 10 = -55:
-55 - 10 x = 35
Add 55 to both sides:
(55 - 55) - 10 x = 55 + 35
55 - 55 = 0:
-10 x = 35 + 55
35 + 55 = 90:
-10 x = 90
Divide both sides of -10 x = 90 by -10:
(-10 x)/(-10) = 90/(-10)
(-10)/(-10) = 1:
x = 90/(-10)
The gcd of 90 and -10 is 10, so 90/(-10) = (10×9)/(10 (-1)) = 10/10×9/(-1) = 9/(-1):
x = 9/(-1)
Multiply numerator and denominator of 9/(-1) by -1:
Answer: x = -9
X+10=7x
10=6x
10/6=x
1 4/6 = x
1 2/3 =x
Hope this helps :)
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Multiple Roots
- Standard Form: ax² + bx + c = 0
- Quadratic Formula:

<u>Algebra II</u>
- Imaginary Root <em>i</em> = √-1
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
2x² + x + 67 = 0
<em>a</em> = 2
<em>b</em> = 1
<em>c</em> = 67
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Quadratic Formula]:

- Multiply:

- [√Radical] Evaluate exponents:

- [√Radical] Multiply:

- [√Radical] Subtract:

- [√Radical] Simplify:

Answer:
The rate of change of a function with respect to a variable.
Step-by-step explanation:
For example: The slope of a constant value (like 3) is always 0. The slope of a line like 2x is 2, or 3x is 3 etc. and so on.