1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tigry1 [53]
3 years ago
5

Please help me

Engineering
1 answer:
Minchanka [31]3 years ago
7 0

Answer:

The first step of the problem solving process is to identify and define the problem. The second step, which is to analyze the problem, involves gathering information, sorting through relevant and irrelevant information, and evaluating the source of the problem by asking the Five W's: who, what, where, when, and why.

You might be interested in
Ayden read 84 pages in 2 hours. At that rate, how many pages can he read in 5 hours
Papessa [141]

Answer:210

Explanation:

Divide 84 by 2 and then multiply by 5 by that number

3 0
4 years ago
Read 2 more answers
A civil engineer is analyzing the compressive strength of concrete. The compressive strength is approximately normal distributed
hram777 [196]

Answer:

See explanation

Explanation:

Solution:-

- A study on compressive strength of a concrete was made. The distribution of compressive strength ( experimental testing ) was normally distributed with variance ( σ^2 ).

- A random sample of n = 12 specimens were taken and the mean compressive strength ( μ ) of 3500 psi was claimed.

- We are to test the claim made by the civil engineer regarding the mean compressive strength of the concrete. The data of compressive strength of each specimen from the sample is given below:

            3273, 3229, 3256, 3272, 3201, 3247, 3267, 3237,

                          3286, 3210, 3265, 3273

- We will conduct the hypothesis whether the mean compressive strength of the concrete conforms to the claimed value.

      Null hypothesis: μ = 3500 psi

      Alternate hypothesis: μ ≠ 3500 psi

- The type of test performed on the sample data will depend on the application of Central Limit Theorem.

- The theorem states that the sample can be assumed to be normally distributed if drawn from a normally distributed population. ( We are given the population is normally distributed; hence, theorem applies )

- We will approximate the mean of the population ( μ ) with the sample mean ( x ), as per the implication specified by the theorem.

- The mean of the sample ( x ) is calculated as follows:

    x = \frac{Sum ( x_i )}{n} \\\\x = \frac{Sum ( 3273+ 3229+ 3256+ 3272+ 3201+ 3247+ 3267+ 3237+ 3286+ 3210+ 3265+3273 )}{12} \\\\x = \frac{39016}{12} \\\\x = 3251.3333

 

- Since, we are testing the average compressive strength of a concrete against a claimed value. Any value that deviates significantly from the claimed value is rejected. This corroborates the use of one sample two tailed test.

- The test value may be evaluated from either z or t distribution. The conditions for z-test are given below:

  • The population variance is known OR sample size ( n ≥ 30 )    

- The population variance is known; hence, we will use z-distribution to evaluate the testing value as follows:

              Z-test = \frac{x - u}{\sqrt{\frac{sigma^2}{n} } } \\\\Z-test = \frac{3251.333 - 3500}{\sqrt{\frac{1000^2}{12} } } \\\\Z-test = -27.24      

- The rejection region for the hypothesis is defined by the significance level ( α = 0.01 ). The Z-critical value ( limiting value for the rejection region ) is determined:

           Z-critical = Z_α/2 = Z_0.005

- Use the list of correlation of significance level ( α ) and critical values of Z to determine:

          Z-critical = Z_0.005 = ± 2.576

- Compare the Z-test value against the rejection region defined by the Z-critical value.

     Rejection region: Z > 2.576 or Z < -2.576

- The Z-test value lies in the rejection region:

            Z-test < Z-critical

           -27.24 < -2.576 .... Null hypothesis rejected

Conclusion: The claim made by the civil engineer has little or no statistical evidence as per the sample data available; hence, the average compressive strength is not 3500 psi.

- To construct a confidence interval for the mean compressive strength ( μ ) we need to determine the margin of error for the population.

- The margin of error (ME) is defined by the following formula:

              ME = Z^*. \frac{sigma}{\sqrt{n} }

Where,

- The ( Z* ) is the critical value for the defined confidence level ( CI ):

- The confidence interval and significance level are related and critical value Z* is as such:

   

            α = 1 - CI , Z* = Z_α/2

- The critical values for ( CI = 99% & 95% ) are evaluated:

           α = 1 - 0.99 = 0.01 , α = 1 - 0.95 = 0.05

           Z* = Z_0.005        ,   Z* = Z_0.025

           Z* = ± 2.58            ,   Z* = ± 1.96

- The formulation of Confidence interval is given by the following inequality:

                 [ x - ME  <    μ    <   x + ME ]

                 [ x - Z*√σ^2 / n   <    μ    <   x + Z*√σ^2 / n ]

- The CI of 95% yields:

   [ 3251.33 - 1.96*√(1000 / 12)   <    μ    <   3251.33 + 1.96*√(1000 / 12) ]

                [ 3251.333 - 17.89227 <    μ    <   3251.33 + 17.89227 ]

                              [ 3233.44  <    μ    <  3269.23  ]

- The CI of 99% yields:

   [ 3251.33 - 2.58*√(1000 / 12)   <    μ    <   3251.33 + 2.58*√(1000 / 12) ]

                [ 3251.333 - 23.552 <    μ    <   3251.33 + 23.552 ]

                              [ 3227.78  <    μ    <  3274.88  ]

                 

- We see that the width of the confidence interval increases as the confidence level ( CI ) increases. This is due to the increase in critical value ( Z* ) associated with the significance level ( α ) increases.    

7 0
3 years ago
"Carbon 14 (C-14), a radioactive isotope of carbon, has a half-life of 5730 ± 40 years. Measuring the amount of this isotope lef
igor_vitrenko [27]

Answer:

The age of the bones is approximately 14172 years.

Explanation:

The age of the bones can be determinated using the following decay equation:

N_{(t)} = N_{0}e^{-\lambda t}   (1)

<u>Where:</u>

N(t): is the quantity of C-14 at time t

No: is the initial quantity of C-14  

λ: is the decay rate      

t: is the time

First, we need to find λ:

\lambda = \frac{ln(2)}{t_{1/2}}

<u>Where:</u>

t(1/2): is the half-life of C-14 = 5730 y

\lambda = \frac{ln(2)}{5730 y} = 1.21 \cdot 10^{-04} y^{-1}

Now, we can calculate the age of the bones by solving equation (1) for t:

t = \frac{-ln(\frac{N_{(t)}}{N_{0}})}{\lambda}

We know that the bones have lost 82% of the C-14 they originally contained, so:

N_{t} = (1 - 0.82)N_{0} = 0.18N_{0}

t = \frac{-ln(0.18)}{1.21 \cdot 10^{-04} y^{-1}}

t = 14172 y

Therefore, the age of the bones is approximately 14172 years.

I hope it helps you!

3 0
3 years ago
Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of "84" m3/min and exits at 12
Nina [5.8K]

Answer:

W = - 184.8 kW

Explanation:

Given data:

P_1 = 1.05 bar

T_1 = 300K

\dot V_1 = 84 m^3/min

P_2 = 12 bar

T_2 = 400 K

We know that work is done as

W = - [ Q + \dor m[h_2 - h_1]]

forP_1 = 1.05 bar,  T_1 = 300K

density of air is 1.22 kg/m^3 and h_1 = 300 kJ/kg

for P_2 = 12 bar, T_2 = 400 K

h_2 = 400 kj/kg

\dot m = \rho \times \dor v_1 = 1.22 \frac{84}{60} =1.708 kg/s

W = -[14 + 1.708[400-300]]

W = - 184.8 kW

8 0
3 years ago
A shaft made of stainless steel has an outside diameter of 42 mm and a wall thickness of 4 mm. Determine the maximum torque T th
fiasKO [112]

Answer:

Explanation:

Using equation of pure torsion

\frac{T}{I_{polar} }=\frac{t}{r}

where

T is the applied Torque

I_{polar} is polar moment of inertia of the shaft

t is the shear stress at a distance r from the center

r is distance from center

For a shaft with

D_{0} = Outer Diameter

D_{i} = Inner Diameter

I_{polar}=\frac{\pi (D_{o} ^{4}-D_{in} ^{4}) }{32}

Applying values in the above equation we get

I_{polar} =\frac{\pi(0.042^{4}-(0.042-.008)^{4})}{32}\\I_{polar}= 1.74 x 10^{-7} m^{4}

Thus from the equation of torsion we get

T=\frac{I_{polar} t}{r}

Applying values we get

T=\frac{1.74X10^{-7}X100X10^{6}  }{.021}

T =829.97Nm

7 0
3 years ago
Other questions:
  • What are the x and y coordinates of the centroid of the area?
    10·1 answer
  • Create a program that calculates the monthly payments on a loan using Decimal &amp; LC Console SEE Sanple Run Attached Specifica
    14·1 answer
  • Impact strips may be designed into a bumper cover.<br> True<br> False
    14·1 answer
  • A compressor receives 0.1 kg / s of R-134a at 150 kPa, − 0 ° C and delivers it at 1200 kPa, 50°C. The power input is measured to
    12·1 answer
  • Which option identifies the technology that controlled flooding in the following scenario? The Nile River in Egypt floods its ba
    15·2 answers
  • An engineer lives in Hawaii at a location where the annual rain fall is 300 inches. She decides to use the rain to generate elec
    10·1 answer
  • Type the correct answer in the box. Spell all words correctly. Type the exact term Mike should use for the given scenario. Mike
    8·2 answers
  • How long would it take a marble to travel down a 15 inch piece of cardboard at a 15 degree angle?
    12·1 answer
  • ⊂who else is obsessed with the ornail
    9·1 answer
  • Responding to the campaign of 4 classes, 7A, 7B, 7C, 7D contributed the amount of support proportional to the numbers 8,6;7;5 kn
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!