1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
14

What impact does modulus elasticity have on the structural behavior of a mechanical design?

Engineering
1 answer:
devlian [24]3 years ago
8 0

Answer with Explanation:

The modulus of elasticity has an profound effect on the mechanical design of any machine part as explained below:

1) Effect on the stiffness of the member: The ability of any member of a machine to resist any force depends on the stiffness of the member. For a member with large modulus of elasticity the stiffness is more and hence in cases when the member has to resist a direct load the member with more modulus of elasticity resists the force better.

2)Effect on the deflection of the member: The deflection caused by a force in a member is inversely proportional to the modulus of elasticity of the member thus in machine parts in which we need to resist the deflections caused by the load we can use materials with greater modulus of elasticity.

3) Effect to resistance of shear and torque: Modulus of rigidity of a material is found to be larger if the modulus of elasticity of the material is more hence for a material with larger modulus of elasticity  the resistance it offer's to shear forces and the torques is more.

While designing a machine element since the above factors are important to consider thus we conclude that modulus of elasticity has a profound impact on machine design.

You might be interested in
An exit sign must be:Colored in a way that doesn’t attract attentionIlluminated by a reliable light sourceAt least 3 inches tall
Ksenya-84 [330]

Answer:

Red

Explanation:

5 0
3 years ago
Both carpenters and building inspectors have been associated with the personality characteristics identified as realistic, conve
Inessa05 [86]

Answer:

Inspectors use inductive reasoning on the job.

Explanation:

I just took the test.

8 0
3 years ago
The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
masha68 [24]

Answer:

86 mm

Explanation:

From the attached thermal circuit diagram, equation for i-nodes will be

\frac {T_ \infty, i-T_{i}}{ R^{"}_{cv, i}} + \frac {T_{o}-T_{i}}{ R^{"}_{cd}} + q_{rad} = 0 Equation 1

Similarly, the equation for outer node “o” will be

\frac {T_{ i}-T_{o}}{ R^{"}_{cd}} + \frac {T_{\infty, o} -T_{o}}{ R^{"}_{cv, o}} = 0 Equation 2

The conventive thermal resistance in i-node will be

R^{"}_{cv, i}= \frac {1}{h_{i}}= \frac {1}{30}= 0.033 m^{2}K/w Equation 3

The conventive hermal resistance per unit area is

R^{"}_{cv, o}= \frac {1}{h_{o}}= \frac {1}{10}= 0.100 m^{2}K/w Equation 4

The conductive thermal resistance per unit area is

R^{"}_{cd}= \frac {L}{K}= \frac {L}{0.05} m^{2}K/w Equation 5

Since q_{rad}  is given as 100, T_{o}  is 40 T_ \infty  is 300 T_{\infty, o}  is 25  

Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain

\frac {300-T_{i}}{0.033} +\frac {40-T_{i}}{L/0.05} +100=0  Equation 6

\frac {T_{ i}-40}{L/0.05}+ \frac {25-40}{0.100}=0

T_{i}-40= \frac {L}{0.05}*150

T_{i}-40=3000L

T_{i}=3000L+40 Equation 7

From equation 6 we can substitute wherever there’s T_{i} with 3000L+40 as seen in equation 7 hence we obtain

\frac {300- (3000L+40)}{0.033} + \frac {40- (3000L+40)}{L/0.05}+100=0

The above can be simplified to be

\frac {260-3000L}{0.033}+ \frac {(-3000L)}{L/0.05}+100=0

\frac {260-3000L}{0.033}=50

-3000L=1.665-260

L= \frac {-258.33}{-3000}=0.086*10^{-3}m= 86mm

Therefore, insulation thickness is 86mm

8 0
3 years ago
PLEASE HELP ME!!!!!! 100 POINTS FOR HELPFUL ANSWERS + BRAINLIEST!!!!!
const2013 [10]

Answer:

well you could get some green goblin it disolves all the c rap in sink

Explanation:

6 0
3 years ago
Read 2 more answers
The Cv factor for a valve is 48. Compute the head loss when 30 GPM of water passes through the valve.
dlinn [17]

Answer:

The head loss in Psi is 0.390625 psi.

Explanation:

Fluid looses energy in the form of head loss. Fluid looses energy in the form of head loss when passes through the valve as well.

Given:

Factor cv is 48.

Flow rate of water is 30 GPM.

GPM means gallon per minute.

Calculation:

Step1

Expression for head loss for the water is given as follows:

c_{v}=\frac{Q}{\sqrt{h}}

Here, cv is valve coefficient, Q is flow rate in GPM and h is head loss is psi.

Step2

Substitute 48 for cv and 30 for Q in above equation as follows:

48=\frac{30}{\sqrt{h}}

{\sqrt{h}}=0.625

h = 0.390625 psi.

Thus, the head loss in Psi is 0.390625 psi.

 

5 0
3 years ago
Other questions:
  • A rectangular channel 6 m wide with a depth of flow of 3m has a mean velocity of 1.5 m/sec. The channel undergoes a smooth, grad
    7·1 answer
  • One cylinder in the diesel engine of a truck has an initial volume of 650 cm3 . Air is admitted to the cylinder at 35 ∘C and a p
    7·1 answer
  • Compare the tensile load capacity of a 5/16-18 UNC thread and a 5/16-24 UNF thread made of the same material.
    6·1 answer
  • Which of the following describes a polar orbit?
    7·1 answer
  • How do i do this? if y’all don’t mind helping lol
    13·1 answer
  • Question
    8·1 answer
  • Answer the following questions about your own experience in the labor force.
    15·1 answer
  • Consider a single crystal of some hypothetical metal that has the FCC crystal structure and is oriented such that a tensile stre
    7·1 answer
  • Example 12: Write an algorithm and draw a flowchart to calculate
    12·1 answer
  • ) If the blood viscosity is 2.7x10-3 Pa.s, length of the blood vessel is 1 m, radius of the blood vessel is 1 mm, calculate the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!