Answer:
Average weather conditions of a region over the long term
Explanation:
Climate is the long-term average of weather, typically averaged over a period of 30 years. More rigorously, it denotes the mean and variability of meteorological variables over a time spanning from months to millions of years.
Answer:
c. 0.2 M HNO₃ and 0.4 M NaF
.
Explanation:
A buffer is defined as the mixture of a weak acid with its conjugate base or a weak base with its conjugate acid.
A weak acid or weak base are defined as an acid or base that partially dissociates in aqueous solution. in contrast, a strong acid or base are acids or bases that is dissociated completely in water.
Thus:
a. 0,2M HNO₃ and 0.4 M NaNO₃. This is a mixture of a strong acid with its conjugate base. <em>IS NOT </em>a buffer.
b. 0.2 M HNO₃ and 0.4 M HF
. This is a mixture of two strong acids. <em>IS NOT </em>a buffer.
c. 0.2 M HNO₃ and 0.4 M NaF
. NaF is the conjugate base of a weak acid as HF is.
The reaction of HNO₃ with NaF is:
HNO₃ + NaF → HF + NaNO₃
That means that in solution you will have a weak acid (HF) with its conjugate base (NaF). Thus, this mixture <em>IS </em>a buffer.
d. 0.2 M HNO₃ and 0.4 M NaOH. This is the mixture of a strong acid with a strong base, thus, this <em>IS NOT </em>a buffer.
I hope it helps!
The cell membrane which is more fat permeable will be present at the end of the process.
Solvent extraction is a very important method if separating mixtures. The principle of solvent extraction is based on the idea of like dissolves like. A substance dissolves in the component of the system in which it is most soluble.
If a cell extract is dissolved in a nonpolar solvent, the cell membrane which is mostly permeable to nonpolar molecules will dissolve most in the solvent.
Learn more:brainly.com/question/14396802
D. A sour liquid that forms gas bubblee when mixed with copper
<span>In the given chemical equation, 4 moles of nh3 gas react with 5 moles of oxygen to form 6moles of water vapours (h2o). Hence each mole of nh3 contributes to production of 1.5 moles of water vapours.
therefore, the rate of formation of h2o is 1.5*0.5 ms-1, i.e 0.75 moles/sec</span>