Answer:
<h3>
<u>A). react with acid that is added and make a base.</u></h3>
explanation:
<em>Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added.</em>
Answer:
Its in the Explanation
Explanation:
Here's what I got.
Aluminium-27 is an isotope of aluminium characterized by the fact that is has a mass number equal to
27
.
Now, an atom's mass number tells you the total number of protons and of neutrons that atom has in its nucleus. Since you're dealing with an isotope of aluminum, it follows that this atom must have the exact same number of protons in its nucleus.
The number of protons an atom has in its nucleus is given by the atomic number. A quick looks in the periodic table will show that aluminum has an atomic number equal to
13
.
This means that any atom that is an isotope of aluminum will have
13
protons in its nucleus.
Since you're dealing with a neutral atom, the number of electrons that surround the nucleus must be equal to the number of protons found in the nucleus.
Therefore, the aluminium-27 isotope will have
13
electrons surrounding its nucleus.
Finally, use the known mass number to determine how many neutrons you have
mass number
=
no. of protons
+
no. of neutrons
no. of neutrons
=
27
−
13
=
14
Your welcome :)
Answer:
Bowling Ball
Explanation:
The bowling ball has the highest gravitational potential energy because the height at which it will fall is the highest of the rest objects on the table.
Answer: The density of chloroform is 1.47 g/mL
Explanation : Given,
Volume = 40.5 mL
Mass of cylinder = 85.16 g
Mass of cylinder and liquid = 145.10 g
First we have to calculate the mass of liquid (chloroform).
Mass of liquid = Mass of cylinder and liquid - Mass of cylinder
Mass of liquid = 145.10 g - 85.6 g
Mass of liquid = 59.5 g
Now we have to calculate the density of liquid (chloroform).
Formula used:

Now putting g all the given values in this formula, we get:


Therefore, the density of chloroform is 1.47 g/mL
The symbol, the atomic mass, the number of protons and electrons