Answer:
Final mass = 159.5 g
Final temperature = 10 C
Final density = 1.00 g/ml
Explanation:
<u>Given:</u>
Beaker 1:
Mass of water = 44.3 g
Temperature = 10 C
Beaker 2:
Mass of water = 115.2 g
Temperature = 10 C
Density of water at 10C = 1.00 g/ml
<u>To determine:</u>
The final mass, temperature and density of water
<u>Calculation:</u>

Since there is no change in temperature, the final temperature will be 10 C
Density of a substance is an intensive property i.e. it is independent of the mass. Hence the density of water will remain constant i.e. 1.00 g/ml
Answer:
C. The model shows beta decay, whichis not tyoe of nuclear fission
Answer:
A compound contains atoms of different elements chemically combined together in a fixed ratio. An element is a pure chemical substance made of same type of atom.
Explanation:
Answer:
No, gases move freely all over the place, liquids move more freely but in a more contained area, and solids the molecules are rigid, at the most the movement is small vibration as the molecules put pressure on one another to hold their form and stay in place.
The standard entropy for the substances are as follows:
C6H12O2(s) = -212
<span>O2(g) = -205 </span>
<span>CO2(g) = -214 </span>
<span>H2O(l) = -70
</span>
We calculate the ∆S°r<span>eaction by the expression:
</span>∆S°rxn = ∆S°products - ∆S° reactants
∆S°rxn = (212+6x205)-(6x214+6x70)
∆S°rxn = -262 J/K ------> OPTION 3