Answer:
1 second
Explanation:
h = −16t² + 32t
When, h = 16
16 = −16t² + 32t
Divide each of the numbers by 16
1 = -1t² + 2t
Rearrange the equation
1t²-2t+1 = 0
Solving by the quadratic formula, we get

So, time taken by the dolphin to jump out of the water and touch the trainer's hand is 1 second.
If a star is moving towards Earth, shift towards the blue end of the spectrum, this is called blue shift. If the star is moving away from Earth the light from that star will be red and is called red shift .
The faster a star moves towards the earth, the more its light is shifted to higher frequencies. In contrast, if a star is moving away from the earth, its light is shifted to lower frequencies on the color spectrum
if a star is moving towards Earth, it appears to emit light that is shorter in wavelength compared to a source of light that isn't moving. Because shorter wavelengths correspond to a shift towards the blue end of the spectrum, this is called blue shift.
If the star is moving away from Earth, its light will lose energy to reach Earth, therefore the light from that star will be red and is called red shift
learn more about blue shift :
brainly.com/question/5368237?referrer=searchResults
#SPJ4
C. Melt 1g if solid into liquid.
Answer:
The second system must be set in motion
seconds later
Explanation:
The oscillation time, T, for a mass, m, attached to spring with Hooke's constant, k, is:

One oscillation takes T secondes, and that is equivalent to a 2π phase. Then, a difference phase of π/2=2π/4, is equivalent to a time t=T/4.
If the phase difference π/2 of the second system relative to the first oscillator. The second system must be set in motion
seconds later