The force of the tripped catch exerted on the 2.5 Kg ball moving at 8.5 m/s to the Left is 160 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 8.5 m/s
- Final velocity (v) = 7.5 m/s
- Time (t) = 5 ms = 0.25 s
- Mass (m) = 2.5 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted on the ball can be obtained as follow:
F = m(v + u) / t
F = [2.5(7.5 + 8.5)]/ 0.25
F = 40 / 0.25
F = 160 N
Thus, the force exerted on the ball is 160 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
Velocity is a vector. Therefore, it depends on the direction. Pilots need to know the direction of wind, not just the speed. If the pilot is going South, and there's 5 mph wind going South, they'll be happy, but if the wind is going 5 mph North, they'll be going against the wind.
Answer:
μ = 0.6
Explanation:
given,
speed of car = 29.7 m/s
Radius of curve = 50 m
θ = 30.0°
minimum static friction = ?
now,
writing all the forces acting along y-direction
N cos θ - f sinθ = mg
N cos θ -μN sinθ = mg

now, writing the forces acting along x- direction
N sin θ + f cos θ = F_{net}
N cos θ + μN sinθ = F_{net}

taking cos θ from nominator and denominator




now, inserting all the given values

μ = 0.6
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>