Answer:
the answer is d I'm pretty sure
The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by
, where
here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving


Answer: its motion
Explanation: Potential energy is stored energy when an object is without motion, kinetic energy is the energy when a object is in motion.
Answer:
Answer is option b) 2.97m
Explanation:
With the relationship between the force exerted by the runner and the mass that it has, I can determine the acceleration it will have:
F= m × a ⇒ a= (650 kg ×(m/s^2)) / (70kg)= 9.286 (m/s^2)
With the acceleration that prints the force exerted and the time I can determine the distance traveled in the interval:
Distance= (1/2) × a × t^2 = (1/2) × 9.286 (m/s^2) × ((0.8s)^2)= 2.97m