The area of the sector is found by multiplying the area of the circle and the ratio of the angle subtended (measure of the central angle) by the sector to 360.
<h3>How to find the area of a sector?</h3>
1) The formula for area of a sector of a circle is;
A = (θ/360) * πr²
where πr² is area of circle
θ is the angle subtended by the sector
Thus, we conclude that the area of the sector is found by multiplying the area of the circle and the ratio of the angle subtended (measure of the central angle) by the sector to 360.
2) The area of the triangle formed as part of the segment is subtracted from from the area of the sector.
Read more about Area of Sector at; brainly.com/question/22972014
#SPJ1
To solve this equation, all you need to do is substitute the value of x that would be like this y = -2 (-3) -7 and solve, the answer would be -1.
Answer:
9.45
Step-by-step explanation:
3.5 x 2.7 = 9.45
Answer:
Convert into same base
Step-by-step explanation:
Convert both sides into same bases and equate the powers to solve for the variable.
Example:
8^x = 32
You can either use logs to bring the power down or convert both sides into the same base
8 = 2³
8^x = (2³)^x = 2^(3x)
32 = 2⁵
2^(3x) = 2⁵
3x = 5
x = 5/3
x = 1⅔