For this triangle in particular, we can use the special rules of a 30-60-90 triangle
This says:
The opposite side of 30° is: x
The opposite side of 60° is: x * sqrt(3)
The opposite side of the 90° is: 2x
We have our side length for 90° so we just have to work backwards
To find our 30° side length we must divide by 2
8/2 = 4
Which means your y = 4
Now that we have our 30° side length we can just multiple it by sqrt(3)
That means your x = 4 sqrt(3)
Answer:
The answer is 54 cubes.
Step-by-step explanation:
Here are the steps required for Simplifying Radicals:
Step 1: Find the prime factorization of the number inside the radical. Start by dividing the number by the first prime number 2 and continue dividing by 2 until you get a decimal or remainder. Then divide by 3, 5, 7, etc. until the only numbers left are prime numbers. Also factor any variables inside the radical.
Step 2: Determine the index of the radical. The index tells you how many of a kind you need to put together to be able to move that number or variable from inside the radical to outside the radical. For example, if the index is 2 (a square root), then you need two of a kind to move from inside the radical to outside the radical. If the index is 3 (a cube root), then you need three of a kind to move from inside the radical to outside the radical.
Step 3: Move each group of numbers or variables from inside the radical to outside the radical. If there are nor enough numbers or variables to make a group of two, three, or whatever is needed, then leave those numbers or variables inside the radical. Notice that each group of numbers or variables gets written once when they move outside the radical because they are now one group.
Step 4: Simplify the expressions both inside and outside the radical by multiplying. Multiply all numbers and variables inside the radical together. Multiply all numbers and variables outside the radical together.
Shorter version:
Step 1: Find the prime factorization of the number inside the radical.
Step 2: Determine the index of the radical. In this case, the index is two because it is a square root, which means we need two of a kind.
Step 3: Move each group of numbers or variables from inside the radical to outside the radical. In this case, the pair of 2’s and 3’s moved outside the radical.
Step 4: Simplify the expressions both inside and outside the radical by multiplying.
We have to find the values of F.
In this case. F is unlikely to be a polynomial.
But the problem is, we can’t calculate the values of F directly.
There is no real value of x for which x = x−1 x because F isn’t defined at 0 or 1. so,
substituting x = 2.
F(2) + F(1/2) = 3.
Substitute, x = 1/2
F(1/2) + F(−1) = −1/2.
We still are not getting the required value,
therefore,
Substitute x = −1
As, F(2) +F(−1) = 0.
now we have three equations in three unknowns, which we can solve.
It turns out that:
F(2) = 3/4
F(3) = 17/12
F(4) = 47/24
and
F(5) = 99/40
Setting
g(x) = 1 − 1/x
and using
2 → 1/2
to denote
g(2) = 1/2
we see that :
x → 1 - 1/x → 1/(1-x) →xso that:
g(g(g(x))) = x.
Therefore, whatever x 6= 0, 1 we start with, we will always get three equations in the three “unknowns” F(x), F(g(x)) and F(g(g(x))).
Now solve these equations to get a formula for F(x)
As,
h(x) = (1+x)/(1−x)which satisfies
h(h(h(h(x)))) = xNow, mapping x to h(x) corresponds to rotating the circle by ninety degrees.