There is a 0.9968 probability that a randomly selected 50-year-old female lives through the year (based on data from the U.S. Department of Health and Human Services).
-------------------
A Fidelity life insurance company charges $226 for insuring that the female will live through the year. If she does not survive the year, the policy pays out $50,000 as a death benefit.
From the perspective of the 50-year-old female, what are the values corresponding to the two events of surviving the year and not surviving?
----
Ans: -226 ; 50,000-226 = 49774
-------------------------
If a 50-year-old female purchases the policy, what is her expected value?
WORK TRIED:
In the event she lives, the value is -$226. In the event she dies, the value is $49,774.
----
E(x) = 0.9968*(-226) + 0.0032(49774) = -$66
==================================================
Cheers,
ROR
sum of sequence Find the sum of 46 + 42 + 38 + ... + (-446) + (-450) is -25,250
<u>Step-by-step explanation:</u>
We need to find sum of sequence : 46 + 42 + 38 + ... + (-446) + (-450)
Given sequence is an AP with following parameters as :

So , Let's calculate how many terms are there as :
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Sum of an AP is :
⇒ 
⇒ 
⇒ 
⇒ 
Therefore , sum of sequence Find the sum of 46 + 42 + 38 + ... + (-446) + (-450) is -25,250
Here, the answer would be: 765 * 11 = 8415 [ About 8 thousands ]
In short, Your Answer would be Option C) <span>The answer should be about 8,000 yards. The student's answer is not correct.
Hope this helps!</span>
hookes law gives the equation F=kx where F is the elastic force and k is the constant and x or small e is extension if we draw a graph you'll see that the graph increases by the same ratio every single time hence giving a straight line show that they are F and x are propotional to a certain limit