Answer:
sin²x = (1 - cos2x)/2 ⇒ proved down
Step-by-step explanation:
∵ sin²x = (sinx)(sinx) ⇒ add and subtract (cosx)(cosx)
(sinx)(sinx) + (cosx)(cosx) - (cosx)(cosx)
∵ (cosx)(cosx) - (sinx)(sinx) = cos(x + x) = cos2x
∴ - cos2x + cos²x = -cos2x + (1 - sin²x)
∴ 1 - cos2x - sin²x = (1 - cos2x)/2 ⇒ equality of the two sides
∴ (1 - cos2x) - 1/2(1 - cos2x) = sin²x
∴ 1/2(1 - cos2x) = sin²x
∴ sin²x = (1 - cos2x)/2
Answer:
Step-by-step explanation:
5n-53
Hope it helps
Mark me as brainiest pls begging you
Answer:
(-3, -4)
Step-by-step explanation:
f(x) = x – 1 and g(x) = –x – 7
f(x) = g(x)
- x-1= -x-7
- 2x= -6
- x= -3
- f,g= -4
Step-by-step explanation:
if the 2 matrices are inverse, then their product must be the identity matrix
1 0
0 1
so,
m×3 + 2×-7 = 1
7×3 + 3×-7 = 0
m×-2 + 2×m = 0
7×-2 + 3×m = 1
that means we have to solve only
3m - 14 = 1
3m = 15
m = 5