Answer:
x = -7/4
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
5x + 3 - 2x = 12 + 7x - 2
<u>Step 2: Solve for </u><em><u>x</u></em>
- Combine like terms: 3x + 3 = 7x + 10
- [SPE] Subtract 3x on both sides: 3 = 4x + 10
- [SPE] Subtract 10 on both sides: -7 = 4x
- [DPE] Divide 4 on both sides: -7/4 = x
- Rewrite: x = -7/4
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 5(-7/4) + 3 - 2(-7/4) = 12 + 7(-7/4) - 2
- Multiply: -35/4 + 3 + 7/2 = 12 - 49/4 - 2
- Add: -23/4 + 7/2 = 12 - 49/4 - 2
- Add: -9/4 = 12 - 49/4 - 2
- Subtract: -9/4 = -1/4 - 2
- Subtract: -9/4 = -9/4
Here we see that -9/4 does indeed equal -9/4.
∴ x = -7/4 is the solution to the equation.
Answer:
2
Step-by-step explanation:
Because it's a proportional relationship and it goes through the point (9, 18) the equation is y = 2x so when x = 1, y = 2.
Answer:
449.65
Step-by-step explanation:
391x.15=58.65
$58.65+$391= 449.65
You can use factors to solve. Determine all the factor pairs of 24, find the two that are two numbers apart.
1, 24 X
2, 12 X
3, 8 X
4, 6 YES!
Algebraic way to solve using Quadratics:
l = 2 + w
A = lw
A = (2 + w)w Substitute (2 + w) for l
24 = (2 + w)w Substitute 24 in for the area
24 = 2w + w^2 Distribute
w^2 + 2w - 24 = 0 Set equal to 0 (put in standard form)
(w + 6) (w - 4) = 0 Factor
w + 6 = 0 and w - 4 = 0 Set each factor equal to 0.
So w= -6 or w = 4 ... -6 makes no sense for a length! So the width must be 4 and the length will be 4 + 2, which is 6.
Answer:
A
Step-by-step explanation:
Area of a triangle:

In our case:
b=4
h=2
Plug in what we know:

Find the matching solution:
A.) it is 1/2 the area of a rectangle of length 4 units and width 2 units
X B.) it is twice the area of a rectangle of length 4 units and width two units
X C.) it is 1/2 the area of a square of side length 4 units
X D.) it is twice the area of a square of side length 4 units