ANSWER
My answer is in the photo above
1. Let a and b be coefficients such that

Combining the fractions on the right gives



so that

2. a. The given ODE is separable as

Using the result of part (1), integrating both sides gives

Given that y = 1 when x = 1, we find

so the particular solution to the ODE is

We can solve this explicitly for y :


![\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|](https://tex.z-dn.net/?f=%5Cln%7Cy%7C%20%3D%20%5Cln%5Cleft%7C%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%5Cright%7C)
![\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%7D)
2. b. When x = 9, we get
![y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B45%7D%7B21%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B15%7D7%7D%20%5Capprox%20%5Cboxed%7B1.29%7D)
Answer:
24.6%
Step-by-step explanation:
243-195=48
48/195=x/100
48 × 100
4800/195= 24.6%
Answer:
5/10
Step-by-step explanation:
5/10 as a decimal is 0.5, and 40/100 as a decimal is 0.4 (or 0.50 and 0.40, it doesnt make a difference) which means 5/10 is bigger