Explanation:
The two half equations are;
3e + HNO3 → NO
S→ H2SO4 + 6e
When balancing half equations, we have to make sure the number of electrons gained is equal to the number of electrons lost.
<em>Which factor will you use for the top equation?</em>
We multiply by 2 to make the number of electrons = 6e
<em>Which factor will you use for the bottom equation?</em>
We multiply by 1 to make the number of electrons = 6e
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Answer:
B
Explanation:
First of all it is important to know that a half filled orbital is particularly stable. In phosphorus all the electrons occur singly in the 3p sublevel minimizing inter electronic repulsion hence it is more difficult to remove an electron from this energetically stable arrangement. In sulphur, electrons are paired in one of the 3p orbitals thereby lowering the energy of that level due to instability caused by interelectronic repulsion between two electrons in the same orbital.
Explanation:
In liquids, the molecules are held by less strong intermolecular forces of attraction as compared to solids. Due to which they are able to slide past each other. Hence, they have medium kinetic energy.
In gases, the molecules are held by weak Vander waal forces. Hence, they have high kinetic energy due to which they move rapidly from one place to another leading to more number of collisions.
So, when at 298 K and 1 atm
exists in liquid state and
exists as a gas then it means there occurs strong force of attraction between the molecules of
due to which it exists in liquid form.
Thus, we can conclude that at 298 K and 1 atm, bromine is a liquid with a high vapor pressure, whereas chlorine is a gas. This provides evidence that, under these conditions, the forces among
molecules are greater than those among
molecules.
Answer:
the answer is 11.111 and when you round it to the nearest one it’s 11, but to the nearest tenth it’s 10
Explanation: