Answer:
If you mix equal amounts of a strong acid and a strong base, the two chemicals essentially cancel each other out and produce a salt and water. Mixing equal amounts of a strong acid with a strong base also produces a neutral pH (pH = 7) solution.
The group of unsaturated hydrocarbons which 2 carbons are double bonded together, with H bonded to the left, and C H 2 bonded below left, above right, and below right is derived from <u>Alkenes</u>
<h3>What are organic compounds?</h3>
Organic compounds are compounds which contains carbon and hydrogen
Some few classes or organic compounds or hydrocarbons are as follows:
- Alkanes
- Alkenes
- Alkynes
- Alkanols
- Alkanoic acid
- Ketones
- Esters
So therefore, the group of unsaturated hydrocarbons which 2 carbons are double bonded together, with H bonded to the left, and C H 2 bonded below left, above right, and below right is derived from <u>Alkenes</u>
Learn more about organic compounds:
brainly.com/question/1594044
#SPJ1
Answer:
Explanation:
Sure you can - Mercury and water are both liquid at room temperature and atmospheric pressure. But Mercury is much much heavier or denser than water. So much that the two substances will not mix. The lighter water can be separated by pouring it out while the heavy Mercury will stay in the bottom.
Answer:
<u>Some examples of physical properties are:
</u>
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils.
melting point (intensive): the temperature at which a substance melts.
Explanation:
Hope this helped! <3
Answer:
1.4 g H₂O
Explanation:
In a reaction, the reactants are usually not present in exact <em>stoichiometric amounts</em>, that is, <em>in the proportions indicated by the balanced equation</em>. Frequently a large excess of one reactant is supplied to ensure that the more expensive reactant is completely converted to the desired product. Consequently, some reactant will be left over at the end of the reaction. T<em>he reactant used up first in a reaction</em> is called the <em>limiting reagent</em>, because <u>the maximum amount of product formed depends on how much of this reactant was originally present</u>. When this reactant is used up, no more product can be formed.