Answer:
C₆H₁₂O₆ and O₂ are reactant.
CO₂ and H₂O are products.
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced, however carbon dioxide is released in this step.
The substances present before the reaction are the reactants. (As the reaction goes through, the substances that are produced are called the products of the reaction).
Answer:
The ancient Greeks believed in the four elements of air, earth, fire, and water. The Greek philosopher Empedocles is known for originating the theory of these classic four elements being the basis of all things.
Answer: 58.44g
Explanation: The molar mass of NaCl is 58.44g.
The chalk particles embed themselves into the small pores on the surface.
Although a chalkboard seems smooth to the touch, it is quite rough at the microscopic level, with <em>pores</em> that reach below the surface.
When you drag chalk across the board, friction causes small particles of chalk to rub off onto the surface.
If you leave the markings for a long time, some of the chalk particles will work their way into the pores.
A brush will remove the surface particles, but <em>it will not be able to get at the particles in the pores</em>.