1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
5

Find the volume of the composite figure​

Mathematics
1 answer:
AURORKA [14]3 years ago
6 0

39in³ is a required volume.

Solution given:

for upper one

length[l]=8in

breadth[b] =3in

height[h]=1in

now

volume [V1]=l×b×h=8×3×1=24in³

again for lower one:

length[l]=6-1=5in

breadth[b] =3in

height[h]=1in

volume [V2]=l×b×h=5×3×1=15in³

Again

total volume =V1+V2=24in³+15in³=39in³

You might be interested in
NO LINKS PLEASE!!!!! i GIVE BRAINLIEST TO WHOEVER ANSWERS FIRST AND CORRECTLY!!!
iris [78.8K]

Answer:(-1,2)

Step-by-step explanation:

5 0
2 years ago
Which number is a prime number 2 or 4or<br> 14 or 24
valina [46]
2 is a prime number for 14 and 24

Hope this helps!!
3 0
3 years ago
Read 2 more answers
Please help I’ll give Brainliest to the best answer
sveticcg [70]

Answer: Your answer is 3,000,150     plz give brain list

Step-by-step explanation:

             150

 2,000,000

+1,000,000

___________

  3,000,150

5 0
3 years ago
What is thirty divided by ten
ivanzaharov [21]

Answer:

It is three.................

3 0
3 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • Solve(x-2)^2-3=1 graphically
    12·1 answer
  • Jayden plants 24 trees.He plants the trees in 3 equal rows. how many trees are in each row
    13·2 answers
  • £980 is divided between Caroline, Sarah &amp; Gavyn so that Caroline gets twice as much as Sarah, and Sarah gets three times as
    9·2 answers
  • gerad has a wooden board 11 feet long, he wants to cut it into 2 pieces so that the longer piece is 4 feet less than 4 times the
    11·1 answer
  • Which equation represents a line which a perpendicular to the line y=4x-7?​
    6·1 answer
  • Describe the transformation that occurs when:
    10·1 answer
  • Can somebody help pleaseIf a number is a whole number, then it cannot be an
    15·1 answer
  • PLEASE HELP EASY MATH PLEASE ASAP
    5·1 answer
  • Cuánto es -2+(-3)+4-(-3)-5
    13·2 answers
  • Hi! It’d be really helpful if someone could explain he two questions below, thanks!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!