The external angle is suplementary to the internal angle close to it. We also know that the sum of all the internal angles of the triangle are equal to 180 degrees, this means that the angle "a" is suplementary to the sum of the angles "b" and "c". Through this logic, we can conclude that since:

Then we can conclude that:

Therefore the statement is true, the exterior angle is equal to the sum of its remote interior angles.
Let's use an example:
On this example, the external angle is 120 degrees, therefore the sum of the remote interior angles must also be equal to that. Let's try:

The sum of the remote interior angles is equal to the external angle.
The line passes through two points that have the same x-coordinate.
It is a vertical line. To find the slope of a line, use any two points. Subtract the y-coordinates. Subtract the x-coordinates in the same order. Then divide the difference of the y-coordinates by the difference of the x-coordinates. Since in this case, the x-coordinates are both -6, the difference between the x-coordinates is zero. Division by zero is not defined, so the slope of this line is undefined. You can't write its equation in point-slope form, because there is no slope for this line.
Answer:
Step-by-step explanation:
Answer: 2/5 because when you multiply the numerator and denominator of 2/5 by 3, you get 6/15