Answer:
Avogadro number of representatives particles is equal to one mole.
Explanation:
The number 6.022 × 10²³ is called Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
17 g of ammonia = 1 mole = 6.022 × 10²³ molecules of ammonia
12 g of carbon = 1 mole = 6.022 × 10²³ atoms of carbon
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
There are things called "Reactants" and "Products" All chemical equations look something like "A + B →C (+ D...)," in which each letter variable is an element or a molecule (a collection of atoms held together by chemical bonds). The arrow represents the reaction or change taking place. Some equations may have a double-headed arrow (↔), which indicates that the reaction can proceed either forward or backward. When a compound has been written out, you must identify the elements and know their chemical symbols. The first element written is “first name” of the compound. Use the periodic table to find the chemical symbol for the element. So here is an example: Dinitrogen hexafluoride. The first element is nitrogen and the chemical symbol for nitrogen is N. To know the numbers of atoms that are present for each element you can just look at the prefix from the element For example: Dinitrogen has a the prefix “di-“ which means 2; therefore, there are 2 atoms of nitrogen present.
Write dinitrogen as N2.
Now for the second element or "last name" of the compound whatever will follow the first element so like; Dinitrogen hexafluoride. The second element is fluorine. Simply replace the “ide” ending with the actual element name. The chemical symbol for fluorine is F.
But the more you practice with, the easier it will be to decipher chemical formulas in the future and learn the language of chemistry.
Sulfur dioxide: SO2
Carbon tetrabromide: CBr4
Diphosphorus pentoxide: P2O5 ← That is one of the examples I'll give you.
have a gooooood daaaaayy
The molarity of the stock solution is 1.25 M.
<u>Explanation:</u>
We have to find the molarity of the stock solution using the law of volumetric analysis as,
V1M1 = V2M2
V1 = 150 ml
M1 = 0.5 M
V2 = 60 ml
M2 = ?
The above equation can be rearranged to get M2 as,
M2 = 
Plugin the values as,
M2 = 
= 1.25 M
So the molarity of the stock solution is 1.25 M.
Answer:
Alkylenes: any of the series of unsaturated hydrocarbons containing a triple bond, including acetylene.
alkanes: Alkanes are organic compounds that consist entirely of single-bonded carbon and hydrogen atoms and lack any other functional groups. Alkanes have the general formula CnH2n+2 and can be subdivided into the following three groups: the linear straight-chain alkanes, branched alkanes, and cycloalkanes.
Explanation:
Do you have a picture of a diagram?