We simply have to divide the total miles that the car can travel by the total amount of gallons of gas.
So,
42 miles/ (11/6 gallons) = 22.91 miles per gallon
Therefore, Sandy's car gets 22.91 miles per gallon of gas
Step-by-step explanation:
count the slope, 5 up in 2.5 horizontal steps, slope = 5/2.5 or 2
x intercept is on the graph, 2.5
y intercept is also on the graph, -5
Not sure if im right but keep multiplying it and then you will get your answer, i have an answer but im afraid it might be a bit off, goodluck
Now, if x = 300 miles, then
y= 1/20*300 + 35
y = 15 + 35
y = 50, therefore it would cost $50.00 to drive the rental car 300 miles.
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx